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To differentiate such expressions we use the product rule, which can be written as:

m Differentiate the following

(a)  xZsin(x) (b) (xP-2x+1)e* (©) }Clog (%)

(a) Lety = x%sin(x) sothat u = x?and v = sin(x) . So that Z—u = 2x and Z—; = cos(x).
X

Using the product rule we have Z—i; = % XV+Ux Z——;
= 2x x sin(x) + x2 x cos(x)
= 2xsin(x) + x2cos(x)
A useful method to find the derivative of a product makes use of the following table:

Function Derivative
du
= 2 S 2 1
u=x T X 2xsin(x) —
dv Adding: 2xsin(x) + x2cos(x)
v = sin(x) T cos(x) x2cos(x) —>

(b) Lety = (x*-2x+1)e*sothat u = (x*-2x+1)andv = e*.

du _ , , dv _ |
Then,a—_%x —2anddx—e .

TR
dx ~ dx dx
Using the product rule: = (Bx2-2)x e+ (x3-2x+1)xe*

= (Bx2-2+x3-2x+1)e*
= (x3+3x2-2x-1)e*

(c) Lety-= }Clogex with u = )—lc and v = log x . This time set up a table:

Function Derivative Adding: dy - 1 x log x + 1 x 1
dx x2 < x X
u—l du _ 1 ——-l-xlogx
X dx x? x? ‘ = _xlz x log x + ;15
v = log x ‘2 = 1 1x1 1
dx ~ x xx = —(1-log,x)
X
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19.3.5 DERIVATIVE OF A QUOTIENT OF FUNCTIONS

In the same way as we have a rule for the product of functions, we also have a rule for the
quotient of functions. For example, the function

M
is made up of two simpler functions of x. Expressions like this take on the general form
u f(x)
y==- or y=*—=.
v 8(x)

For the example shown above, we have that u = x2 and v = x3+x-1.
As for the product rule, we state the result.

To differentiate such expressions we use the quotient rule, which can be written as:

m Differentiate the following

x2+1 eX+x sin(x)
@ sin(x) ® x+1 © 1 - cos(x)

2
(a) We express X+ 1

sin(x)

Giving the following derivatives, du _ 2x and dv = cos(x).

in the form y = %,sothatu =x2+1andv = sin(x).

dx dx
Using the quotient rule we have,
@ XV—Uux ‘ﬂ}
dy _dx dx
dx — v
_ 2xxsin(x) - (x2+ 1) x cos(x)
- [sin(x)]?
_ 2xsin(x) = (x2+ 1)cos(x)
- sin2(x)

. et +x
(b)  First express 1

in the form y = L—‘,sothatu =eX+xandv = x+1 and
v

du . dv _ . .

il +1 and i 1 . Using the quotient rule, we have
@xv—uxg—y

dy _ dx dx:(e"+1)><(x+1)—(ex+x)x1

dx v2 (x+1)2
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_xef+et+x+1-e¥—x
- (x+1)2
_ xe*+1
T (x+1)2
sin(x)
1 - cos(x)

(¢)  Express the quotient in the form y = Y sothatu = sin(x)
14

_ du _ dv _ .
and v = 1 - cos(x).Then i cos(x) and i sin(x) .

Using the quotient rule, we have
du XV—Ux dv
dy _ dx dx _ cos(x)x (1—cos(x))—sin(x) x sin(x)

dx v2 - (1 -cos(x))?
cos(x) — cos2(x) — sin?(x)
(1 —cos(x))?
cos(x) — (cos?(x) + sin%(x))
(1—=cos(x))?

_cos(x)—1

"~ (1-cos(x))?

_ _(1—cos(x))

~ (1-cos(x))?
1

- “(1-cos(x))

19.3.6 THE CHAIN RULE

To find the derivative of x3+ 1 welet y = x3+ 1 so that dy _ 3x2.

Next consider the derivative of the function y = (x3+1)2.

We first expand the brackets, y = x%+ 2x3 + 1, and obtain Z—y = 6x°+6x2.
x

This expression can be simplified (i.e., factorised), giving Z—y = 6x2(x3+1).
X
In fact, it isn’t too great a task to differentiate the function y = (x3+1)3.

As before, we expand; y = x? + 3x°+3x3 + 1 so that Z—i} = Ox8 4+ 18x5+9x2.

Factorising this expression we now have Z—y = Ox2(x6+2x3+1) = 9x2(x3+1)2.
X

But what happens if we need to differentiate the expression y = (x3 + 1)8 ? Of course, we could
expand and obtain a polynomial with 9 terms (!), which we then proceed to differentiate and
obtain a polynomial with 8 terms. . . and of course, we can then easily factorise that polynomial
(not!). The question then arises, “Is there an easier way to do this?”

We can obtain some idea of how to do this by summarising the results found so far:
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Function Derivative (Factored form)
y=x3+1 Z—§=3x2 3x2
y = (x3+1)2 Z—i; = 6x5 +6x2 2x3x2(x3+1)
y = (x3+1)3 le_ic) = Ox8 4+ 18x5 +9x2 3x3x2(x3+1)2
y = (x3+1)4 Z—i) = 12x11 + 36x8 + 36x5 + 12x2 4x3x2(x3+1)3

The pattern that is emerging is that if y = (x3 + 1) then Z—y = nx3x2(x3+1)"- 1,
x
In fact, if we consider the term inside the brackets as one function, so that the expression is
actually a composition of two functions, namely that of x3+ 1 and the power function
we can write u = x>+ 1 and y = u”".
dy _ dy _dy  du

So that i nu" ! = n(x3+1)"-1 and Z—Z = 3x2, giving the result il P

Is this a ‘one—off” result, or can we determine a general result that will always work?
To explore this we use a graphical approach to see why it might be possible to obtain a general
result.

We start by using the above example and then move onto a more general case. For the function
y=(x3+1)2,weletu = x3+1(= g(x)) andsoy = u? (= f(g(x))).We need to find what

effect a small change in x will have on the function y (via u). i.e., what effect will dx have on y ?

u = f(x) y = g(f(x))

We have a sort of chain reaction, that is, a
small change in x, dx , will produce a
change in u, du , which in turn will produce
a change in y, 8y ! It is the path from dx to

dy that we are interested in.

This can be seen when we produce a graphical representation of the discussion so far.
We start by looking at the effect Then we observe the effect
that a change in x has on u: that the change in u has on
y:
We then have 0x = 1.1 -1 = 0.1

u y‘
u= f(x))= x3+1 and du = 2331 -2 = 0331.
"""" 5433561 Similarly, du = 2331 -2 = 0331
¢5“ \ & &y = 5433561 —4 = 1433561

| 4o

Based on these results, the following
relationship can be seen to hold:
by _ oy ou

=2 w23y dx ~ du” dx




Differential Calculus - CHAPTER 19

The basic outline in proving this result is shown in the following argument:

Let 0x be a small increment in the variable x and let du be the corresponding increment in the
variable u. This change in u will in turn produce a corresponding change 0y in y.
As Ox tends to zero, so does du . We will assume that du = 0 when dx = 0 . Hence we have that

lim Q%
Ox ~ du dx sx—00x  sx—0du Ox

(Jim 32) -+ ( tim 31

(Jtim 32) -(tim B) et

& _ by 0w g

.dy _dy du

dx  du dx
We then have the result:

&y _ @y, gl

dx du dx

Chain rule (composite function notation)

An alternative notation when using the chain rule occurs when the function is expressed in the
form of a composite function, i.e., in the form fog .

So,if F = fog,then F(x) = f(g(x))and F'(x) = f'(g(x))-g'(x).
That is, the derivative of the composite function fog is (fog) = (f'og)g',or

d . _dfdu .
dx(fog) = dudx’Where u = g(x) .

In short, the chain rule provides a process whereby we can differentiate expressions that involve
composite functions. For example, the function y = sin(x?) is a composition of the sine
function sin( ) and the squared function, x2 . So that we would let u (or g(x) ) equal x2, giving

y = sin(u), where u = x2.

The key to differentiating such expressions is to recognise that the chain rule must be used, and to
choose the appropriate function u (or g(x)).

Using the chain rule

We will work our way through an example, showing the critical steps involved when using the
chain rule.

This is highlighted by finding the derivative of the function y = sin(x2).
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Step 1

Recognition

This is the most important step when deciding if using the chain rule is

appropriate. In this case we recognise that the function y = sin(x2) is a
composite of the sine and the squared functions.

Step 2

Define u (or g(x))

Let the ‘inside’ function be u. In this case, we have that
)
U =x

Step 3

Differentiate u (with respect to x)

du
-9
dx *

Step 4

Express y in terms of u

y = sin(u)

Step 5

Differentiate y (with respect to u)

% = cos(u)

Step 6

Use the chain rule

m Differentiate the following functions

dy _ dy du _ - 2
S dn dn s cos(u) x 2x = 2xcos(x?)

(@ y = log,(x+ cosx)

®)  f(x) = (1-3x2)

(a)  Begin by letting u = x + cos(x) = % = 1-sin(x).

Express y in terms of u, thatis, y = log u = % = i(: m) .
. . dy _dy du _ 1 1
Using the chain rule we have dx " di dx - xreos() (1 -sin(x))
_ 1-sin(x)
" x+cos(x)

(b)  This time we let g(x) = 1—3x2,so0 that g'(x) = —6x.

Now let f(x) = (hog)(x) so that h(g(x)) = (g(x))* and h'(g(x)) = 4(g(x))’.
Therefore, using the chain rule we have

f'(x) = (hog)'(x) = h'(g(x)) - g'(x)
4(g(x))? x (=6x)
—24x(1 -3x2)3

630



Differential Calculus - CHAPTER 19

Some standard derivatives

Often we wish to differentiate expressions of the form y = sin(2x) or y = e3* or other such
functions, where the x term only differs by a constant factor from that of the basic function. That
is, the only difference between y = sin(2x) and y = sin(x) is the factor ‘2. We can use the
chain rule to differentiate such expressions:

dy _ dy du

Let u = 2x, giving y = sin («) and so il i cos(u) x2 = 2cos(2x)
Similarly,
— vl — LU @; — Q@ — U — S5x
Let u = 5x, giving y = e* and so s dn dx et x5 = Se>*.

Because of the nature of such derivatives, functions such as these form part of a set of functions
that can be considered as having derivatives that are often referred to as standard derivatives.
Although we could make use of the chain rule to differentiate these functions, they should be
viewed as standard derivatives.

These standard derivatives are shown in the table below (where k is some real constant):

dy

Y dx
sin(kx) kcos(kx)
cos (kx) —ksin(kx)
tan (kx) ksec?(kx)

ekx kekx

1

log (kx) -

X

Notice, the only derivative that does not involve the constant k is that of the logarithmic function.

This is because letting u = kx, we have y = log(u) so Z—i; = %% = %xk =/]%Cx}(= )lc
When should the chain rule be used?

A good rule of thumb:

A good first rule to follow is: If the expression is made up of a pair of brackets and a

power, then, the chances are that you will need to use
the chain rule.

As a start, the expressions in the table that follows would require the use of the chain rule. Notice
then that in each case the expression can be (or already is) written in ‘power form’. That is, of the

form y = [f(x)]".
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Expression Express in power form Decide on what z and y are
(@ y=(2x+6)3 Already in power form. Letu = 2x+6andy = u’
i 1
= (2.3 3 3
® y=J2x+1) y = (2x3+1)? Letu = 2x3+1andy = u?
(@) )’=L,x¢1 y=3(x-1)2,x=1 Letu = x—1andy = 3u=2
(x-1)2 ’
(d)  f(x) = sinZx f(x) = (sinx)?2 Let u = sinx and f(u) = u?
e Y= — -3 |
3/e= + eX y = (e*+ev)? Letu = e*+evandy = u *

However, this isn't always the case!

Although the above approach is very useful, often you have to recognise when the function of a
function rule is more appropriate. By placing brackets in the appropriate places, we can recognise
this feature more readily. The examples below illustrate this:

Expression Express it with brackets Decide on what # and y are
@ = v+l y = e+ D) Letu = x>+ 1landy = e
() y = esin2x y = elsin2y) Let u = sin2xand y = e*
(©)  y = sin(x2-4) Already in bracket form. | Lety = x2—4 and y = sin(u)
(d  f(x) = log,(sinx)| Already in bracket form. | Let u = sinx and f(u) = log (u)

Completing the process for each of the above functions we have:

()

(b)

(©

(d)

Z% = %Z—Z = el x2x = 2xex*+1,

Z_i - %% = e x2cos(2x) = 2cos(2x)esn(Y)
le_ic) = %ZII_Z = cos(u) x 2x = 2xcos(x2-4).

j_i - %% = - XCOSx = %C = cotx

We now look at some of the more demanding derivatives, i.e., derivatives which combine at least
two rules of differentiation, for example, the need to use both the quotient rule and the chain rule,
or the product rule and the chain rule.

m Differentiate the following

(a)

y = A1 +sin%x

(b) y = e*'sin(1-2x)
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(a) Lety = A/(1+sin2x) = (1+ sinzx)]/2 . Using the chain rule we have

dy 1 _d 1 1

—= = = x —(1 +sin2x) x (1 +sin2x)1/2 = = x (28inxCOSX) X ———
dx 2 dx 2 /(1 + sin2x)

_ _sinxcosx
(1 +sin2x)
(b) Lety = e*'sin(1-2x) . Using the product rule first, we have

dy _ i s . _ x3 i 1 —
d—x_dx(e )x sin(1-2x)+e xdx(SlIl(l 2x))

= 3x2e%sin(1 —2x) + e*’ x —2cos(1 —2x)

= ¢*(3x2sin(1 —2x) —2cos(1 —2x))

Ly T T ()
(Sr?+ 1)

1xﬁ—xx%x2xx(x2+l)7%

x2+1
AT x
x2+1

(x2+1)
(Jx2+ 1)2—x2

x2+1

(x2+1)

1

(x2+1)/x2+1

X

Jx2+1

(Quotient rule).

= f'(x)

(¢)  Let f(x) =

m Differentiate the following

(a) y = ln(;{-—T) , x>0 (b) y = sin(Int) (©) y = xIn(x2)
_ X\ 3 .@_l_ I (x+1)-x _ 1
@ y= 1n<x+1) = In(x) 1n(x_'-l)“dx Tx ox+1 0 x(x+1) T x(x+1)°

Notice that using the log laws to first simplify this expression made the differentiation
process much easier.

The other approach, i.e., letting u = % ,¥ = In(u) and then using the chain rule
X
would have meant more work — as not only would we need to use the chain rule but also
the quotient rule to determine %—Z .
(b) Letu = Inf sothaty = sinu.
. . dy _dy du 1 _ cos(Int)
he ch 1 have = = =2+ — = - = =22

Using the chain rule we have TR AT cos(u) x - -
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(c) Here we have a product x x In(x2), so that the product rule needs to be used and then we

need the chain rule to differentiate In(x2) .

Notice that in this case we cannot simply rewrite In(x2) as 2In(x) . Why?
Because the functions In(x2) and 2In(x) might have different domains. That is, the
domain of In(x2) is all real values excluding zero (assuming an implied domain) whereas
the domain of 21n(x) is only the positive real numbers. However, if it had been specified
that x > 0, then we could have ‘converted’ In(x2) to 2In(x).

dy d

d 2x
&L 2 ol 2)) = 2 g 2
So, x(x) x In(x?) + x x x(ln(x )) = IxIn(x*) +xx= =In(x?)+2

A short cut (?)

Once you have practiced the use of these rules and are confident in applying them, you can make
use of the following table to speed up the use of the chain rule. Assuming that the function f(x)
is differentiable then we have:

dy
Y dx

sin[ f(x)] f'(x)cos[f(x)]
cos[f(x)] —f'(x)sin[ f(x)]

tan[f(x)] f'(x)sec?[f(x)]

ef(x) f'(_x)ef(x)
tog ()] e

Lf(x)] nf' (x)Lf (x)]" !

19.3.7 DERIVATIVE OF RECIPROCAL CIRCULAR FUNCTIONS

Dealing with the functions sec(x), cot(x) and cosec(x) is a straight foward matter — simply

ot (x) = —L

rewrite them as their reciprocal counterparts. That is, sec(x) = e and
c an(x

; C
os(x)’

cosec(x) = . Once this is done, make use of the chain rule.

_1
sin(x)

__cosx
(sinx)?’

4 4 LY D drGnoT = - inx)2 =
For example, dx(cosecx) = dx(sinx) = dx[(smx) ] = -1xcosxx (sinx)? =

. P cos X
We could leave the answer as is or simplify it as follows; ————— = —cotxcosecx .
sinxsinx

So, rather than providing a table of ‘standard results’ for the derivative of the reciprocal circular
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trigonometric functions, we consider them as special cases of the circular trigonometric
functions.

m Differentiate the following

(@  f(x) = cot2x,x>0 (b) y = secx @ = In(cosecx)

X
(a)  f(x) = cot2x = L (tan2x)t.o f'(x) = =1 x 2sec?2x x (tan2x)~2
tan2x
B 2sec?2x
tan22x
2 2
Now, 2sec’2x _ X _ X 1 =2x 1 x 095 2x = 2cosec22x.
tan22x cos?2x tan?2x cos22x  sin?2x
And so, f'(x) = —2cosec?2x.
1 dy . 2sinx
b =sec?x = ——— = (cosx) 2.2 = -2 x—sinx x (cosx)™? = .
® (cosx)? ( ) dx ( ) (cosx)3
No 2sinx _ sinx 1

" (cosx)3 dx

d
Y L = 2tanxsec?y ~ % = 2tanxsec?x.
cosx (cosx)? dx

(cosx) .
. . —=) xx—1 x In(sinx)
_ In(cosecx) _ In[(sinx)~'] _ In(sinx)  dy sinx
© = = = g
X X X dx

x2

xcosx — sinxIn(sinx)
_ sinx

2
_ xcosx — sinxIn(sinx)
x2sinx

An interesting result

chain rule (Q = d_y du

A special case of the chain rule involves the case y = x . By viewing this as an application of the

dx du dx we have (after Settlng y = X):
dlx) _ dx du_ | _ dx duy dx o du

d Cdn dx ' T dw dx S a T Va
This important result is often written in the form

We find that this result is very useful with problems that deal with related rates.
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Exercises (I8

Use the product rule to differentiate the following and then verify your answer by
first expanding the brackets

(a) (x2+1)(2x=x3+1) b) (FBP+a)(B3+x2-1)
(c) (xlz_l)<xl2+1> @ (P+x-D(3+x+1)

Use the quotient rule to differentiate the following

+1 +1
@ =1 ® ©  m
x2+1 x2 X
@ ¥l © 5T ® 15

Differentiate the following

(a) e*sinx (b)  xlogx (©) e*(2x3 + 4x)
(d) x*cosx (e) sinxcosx §3) (1 +x2)tanx
(2) iz x sinx (h) xe*sinx 1) xe*log x

X

Differentiate the following

X COSX e
@ sinx (®) x+1 © e+ 1
i log x
sinx by e
d) —:7'; © log x ® x+1
e —1 sinx + cosx . x?2
® x+1 ®) sinx — cosx @ x +log x

Differentiate the following

(1) eSt4x (b)  sindx— %cos 6x (o) e’%x ~log,(2x) + 9x2
(d)  Ssin(5x)+3e2* ()  tan(4x)+ e ) cos(—4x)— e

(@ log(4x+1)-x (h) log,(e™)+x (i) sin(%) + cos(2x)

G sin(7x-2) k) Jx—log,(9x) () log,(5x) - cos(6x)

Differentiate the following
(a) sinx? + sin%x (b) tan(26) + ‘57376 (@) sinA/x

@ cos Gc) (e)  cos30 €3 sin(e*)
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(2) tan(log x) (h) AJcos(2x) 6] cos(sinB)
G) 4secH k) cosec(5x) 0)) 3cot(2x)

7. Differentiate the following

(a) e2x+1 (b) De4-3x ©) e4-3x2 (d) ,\/;:

© ok O e @ et

) 63x2—6x+1 G) esin(0) k) e—c0s(20) ) e2log (%)
(m) 2 (n) (ex_ e—x)3 (0) /62x+4 (P) e—x2+9x—2

e+ 1

8. Differentiate the following

(a) log (x2+1) (b)  log,(sin® +06) () log(e*—e™)
d) loge<)—c~}_—-i> ©  (log.x)? H  flogx

(2) log (Jx—1) () log,(1-x%) (i) log( x1+ 2)
0 log(cos’x+1) () log,(xsinx) W log, =)

9. Differentiate the following

(a)  xlog,(x3+2) ()  Jxsin2x ()  cos2./B

d  x3e 27 +3 (e) cos(xlog x) 63) log (log x)
x2—4x 10x+1 . cos(2x)

® e ™ og.(ox+ D) @ ol =

(G)  x2log,(sindx) k) e sinx ()  cos(2xsinx)
e5x+2 log (sinB) X

(m)

(n) (0)

1-4x

(p)  xJx2+2 @ (B+x)3x+1 (1) (B-1)Jx3+1

cos0

1 x2 x—1
(9 log (¥ +1) ® loge(x—z " Zx) ) -
v)  e*Jx%2+9 w) (8=x3)J2-x (x)  x"In(x"-1)

10. Find the value of x where the function x~ xe~ has a horizontal tangent.

11.  Find the gradient of the function x»esin(i) , where x = T% .
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12. Find the gradient of the function x »log,(x% + 4) at the point where the function

crosses the y—axis.

13. For what value(s) of x will the function x~In(x2 + 1) have a gradient of 1.

14. Find the rate of change of the function x~e- £ +2 at the point (1, e).

. d, . d, . d o
15. Find (a) Ec( sinxcosx) (b) Ec( sinx®) ©) Ec( cosx®)
16. (a) If y is the product of three functions,i.e., y = f(x)g(x)h(x),show that

Z_i; = F(x)g(x)h(x) + f(x)g' (x)h(x) + f(x)g(x)h'(x) .
(b) Hence, differentiate the following i x2sinxcosx

ii. e~*'sin(2x)log (cosx)

17. (a) Giventhat f(x) = 1—x3and g(x) = logx,find i. (fog)'(x)
ii.  (gof)(x)

)

)

(b)  Giventhat f(x) = sin(x2) and g(x) = e, find i. (fog)'(x
i. (gof)(x
18. Giventhat 7(0) = _coskb k = 0, determine T'(£>
’ ~ 2 +3sink®’ ’ 2k

19. If f(x) = (x—a)™(x-b)", find x such that f'(x) = 0.
20. If f(0) = sinB™cos0”,find O such that f'(0) = 0.

21. Differentiate the following
(a) f(x) = cotdx (b))  g(x) = sec2x ©) f(x) = cosec3x

(d) y = sin(3x+g> (e) y = cotC—:—x) ® y = sec(2x—m)

22. Differentiate the following

(a) secx? (b) sinxsecx (©) In(secx)
3 X cosecx
@ cot’x © cosecx ® sinx
(2) x*cosec(4x) (h) tan2xcotx i) JJsecx + cosx
23. Differentiate the following
(a) eseex (b) sec(eX) ©) e*secx
(d) cot(Inx) (e) In(cot5x) ® cotxInx
(2) cosec(sinx) (h) sin(cosecx) @) sinxcosecx
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sinx — xcosx —[sinx(x+ 1) + cosx] 2xCosX — sinx Inx—1
4. (2 b d
® =g (x+1)2 & )(eX+ Y0 ©
(x+1)—xIlnx xeX+ 1 -2 . x2—x+2xInx ~
f o 5. —5ed+ 1
@ x(x+1)2 © (x+1)2 ) (sinx — cosx)? a (x+ Inx)? @ —Se
1
(b) 4cosdx + 3sin6x (c) —%e A i +18x (d) 250085x + 662% (¢) dsec?4x + 2¢2%
(f) —4sin(4x) +3e3* (g) ———1 (h)0 (i) cos( ) 2sin2x (j) 7cos(7x-2) (k) SR
2, gﬁ X

cose

(1)) i +6sin6x 6. (a) 2xcosx? + 2sinxcosx (b) 2sec220 —

(c) 7 cos/x (d) — sm ( 1)

ﬂ (i) —cos 0 - sin(sinB)

(e) —3sin0 - cos28 () e*cos(e*) (g) —secz(loggx) (h)

(j) 4sin6 - sec20 (k) —=5cos5x - csc2(5x) (1) —6¢sc?(2x)
7. (@ 263541 (b) 64737 (0) ~12xe4-3" () 2% (@) L[eﬁ (f) 2544 (g) 2xe2e'+4

(h) - 3 () (65— 6)e? 6541 (j) cos(B)esnO (k) 2sin(20)e=20 (1) 2x (m) ———
X+ ( + ])2
X4 poT)( pX — p-x)2 42 _ P 49x-2 0y 2% cos + 1
() 3(e*+e)(e*—e™)? (0) e*2 (p) (-2x+9)e 8. = b S
© S @ L @ 202 ) ©® it -
ex F 2(x 1) 1-x3 2(x+2)
0) *2“2‘&1‘ ® 1+ cotx (1) ©+ tanx
cos?x + 1
9. (a) In(x*+2) +- (1) sinx

+2./xsinxcosx (c) —— sté cos /0
2./x 6

2 . 1
24y p2243 (o) _
(d) (3x2—4x*)e (e) =(Inx + 1)sin(xInx) (f) T

(2x 4) - sin(x2) - 2x - cos(x2)(x2 - 4x) ) 10(In(10x+1)—1)

© (sinx2)2 [In(10x +1)]?

(i) (cos2x—2sin2x)e*~! (j) 2xIn(sin4x) + 4x2cotdx (k) (cos./x— sim/?c)#e*ﬁ
x

+2 2, 2
(1) ~(2sinx + 2xcosx) - sin(2xsinx) (m) oot =202) ) €050 + sin?0In(sin6)

( —4x)2 sinfcos26

©) x+2 ® 2x2 42 @ 10x3+9x2+4x+3 ) 3x2(3x3+1)

20x+ Dx+1 242 3(x+1)23 233+ 1

2 2 2-x —x2+x—9 Tx3—12x2-8
(s 2 L+t (1) cet (w
)x2+l x2 ( ) x(x+2) 2x2 [e— [x2+9 ) 2./2—x
2n-1
(x) nx"~In(x" - 1)+ mf'—l 10.x=1 11.0 12.0 13. 1 14. 2¢15. (a) cosZx —sinZx
o

(b) ]Socosx (c) — 8Osmx 16. (b) i. 2xsinxcosx + x2cos2x - x2sinZx
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3x2
_ 3

ii. e**(2cos2xIncosx — 3x2sin2xIncosx — sin2xtanx) 17. (a) i. —}%(ln)c)2 ii. -1

(0) 1. ~2¢-2%+ cos(e-2¥) i, ~2xcosx? - e 8. —Lk 19, x = 4, p, Mo NG
5 m+n

m n

20. {0:ntan®" - tan@" = } 21. (a) —4csc(4x) (b) 2sec(2x)tan(2x)

(c) 3cot(3x)csc(3x) (d) —3sin(3x) (e) Cscz(%[— ) (f) —2sec(2x)tan(2x)

22. (a) 2xsec(x2)tan(x2) (b) sec2x (c) tanx (d) —3cot2xcsc?x (e) xcosx + sinx
(f) =2cotxesc2x (g) 4x3csc(4x) —4x*cot(4x)esc(4x) (h) 2cotxsec?(2x) — csc?xtan(2x)

.. secxtanx — sinx oc .
@) secxlany—smx >3, (a) es*¥secxtanx (b) e*sec(e¥)tan(e*)

2. cosx + secx

(c) e*sec(x) + e*sec(x)tan(x) (d)

;CE—ZS—(E—Q (e) =5csc(5x)sec(5x)

- cscz(x)logx (g) —cosxcot(sinx)csc(sinx) (h) —cos(cscx)cotxescx (i) 0
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EXERCISE 19.4

1. ) () =2 (d) =2 (e) 52—
4x 2+1 9 —x2 J1—4x2 J1—16x2 X2+4 A/2x x2 A/l6 x2
(h) 1 . 1 ) -1 6

(0] ®) 1) —=
A (x+ 1) (G=x)2+1 7 fax 2 4x2+9 A/—x2+x+2

2. (d) ) 1 —sinx  _ Jl—l if sinx >0 © 1
zm Nm m lLifsiny<0  2x/x—1
e 1 emsing -4
msln L@ T )JEZT i (4x2+1)[tanf'(2x)]2

1 2 4 1
Y i © e ™ Tin o @ wh
— 41— x2sin"'x © X+ A1 —x%cos™'x

x2.J1 - x2 (cos™1x)21 — x2

—2x2tan"'x + x - 2tan~!x 2x2logx + A/1 — x*sin~!(x2) —J1T—xcos™ ' Jx - Jx

3. (a) Tan™! x+

(l)

@ D) © —= O ==

() ettan~!(e%) + - iz;x (h) 2xtan*1<§) +2() pﬁsm%(g) 4. 0,k = g
6.(b) k = g

7. f'(x) = Ji x> and ﬁ,x<—n;dom(f) =)=, —[ U], o[
) fx) = % sidom(r) =[5 dom(p) =[5

© fix) = JLCO 4( ) J‘%szinfl(x),—l<x<l;dom(f) =11
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