

Markscheme

May 2019

Mathematics

Higher level

Paper 1

17 pages

Section A

1. atte	empting to form two equations involving u_1 and d	М1			
(u_1)	$+2d$)+ $(u_1+7d)=1$ and $\frac{7}{2}[2u_1+6d]=35$				
$2u_1$	+9d = 1				
14 <i>u</i>	$u_1 + 42d = 70 \left(2u_1 + 6d = 10 \right)$	A1			
Note: Award A1 for any two correct equations					
atte $u_1 =$	empting to solve their equations: = 14, $d = -3$	М1 А1	[4		
			[4 marks]		
2 . (a)	(i) $\vec{AB} = \begin{pmatrix} 0\\ 2\\ -2 \end{pmatrix}$	A1			
	(ii) $\vec{AC} = \begin{pmatrix} 3\\1\\-2 \end{pmatrix}$	A1			
	Note: Accept row vectors or equivalent.				
(1.)			[2 marks]		
(b)	METHOD 1 ettempt at vector product using \overrightarrow{AP} and \overrightarrow{AC}	(1114)			
	$\pm (2i+6j+6k)$	A1			
	attempt to use area = $\frac{1}{2} \left \overrightarrow{AB} \times \overrightarrow{AC} \right $	М1			
	$=\frac{\sqrt{76}}{2}\left(=\sqrt{19}\right)$	A1			
	2		[4 marks]		

Question 2 continued

METHOD 2

attempt to use
$$\vec{AB} \cdot \vec{AC} = \left| \vec{AB} \right| \left| \vec{AC} \right| \cos \theta$$
 M1

$$\begin{pmatrix} 0 \\ 2 \\ -2 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix} = \sqrt{0^2 + 2^2 + (-2)^2} \sqrt{3^2 + 1^2 + (-2)^2} \cos \theta$$

$$6 = \sqrt{8}\sqrt{14} \cos \theta$$
 A1

$$\cos\theta = \frac{6}{\sqrt{8}\sqrt{14}} = \frac{6}{\sqrt{112}}$$

attempt to use area = $\frac{1}{2} |\vec{AB}| |\vec{AC}| \sin \theta$ М1

$$= \frac{1}{2}\sqrt{8}\sqrt{14}\sqrt{1 - \frac{36}{112}} \left(= \frac{1}{2}\sqrt{8}\sqrt{14}\sqrt{\frac{76}{112}} \right)$$
$$= \frac{\sqrt{76}}{2} \left(= \sqrt{19} \right)$$
 A1
[4 marks]

Total [6 marks]

3.
$$g(x) = f(x+2) \left(= (x+2)^4 - 6(x+2)^2 - 2(x+2) + 4 \right)$$
 M1

attempt to expand
$$(x+2)^4$$
 M1
 $(-2)^4 + 4(2^3) + 2(2^2 + 2) + 4(2^3) + 2^4$

$$(x+2)^{4} = x^{4} + 4(2x^{3}) + 6(2^{2}x^{2}) + 4(2^{3}x) + 2^{4}$$
(A1)
$$x^{4} + 8x^{3} + 24x^{2} + 22x + 16$$

$$= x^{4} + 8x^{3} + 24x^{2} + 32x + 16$$

$$g(x) = x^{4} + 8x^{3} + 24x^{2} + 32x + 16 - 6(x^{2} + 4x + 4) - 2x - 4 + 4$$

$$= x^{4} + 8x^{3} + 18x^{2} + 6x - 8$$
A1

Note: For correct expansion of
$$f(x-2) = x^4 - 8x^3 + 18x^2 - 10x$$
 award max **MOM1(A1)A0A1**.

[5 marks]

4.
$$u = \sin x \Rightarrow du = \cos x dx$$
 (A1)
valid attempt to write integral in terms of u and du M1

$$\int \frac{\cos^3 x \, dx}{\sqrt{\sin x}} = \int \frac{(1 - u^2) \, du}{\sqrt{u}}$$
A1

$$= \int \left(u^{-\frac{1}{2}} - u^{\frac{3}{2}}\right) du$$
(A1)

$$= 2u^{\frac{1}{2}} - \frac{2u^{\frac{5}{2}}}{5}(+c)$$
(A1)

$$= 2\sqrt{\sin x} - \frac{2(\sqrt{\sin x})^5}{5}(+c) \text{ or equivalent}$$
A1

-9-

[5 marks]

correct shape: two branches in correct quadrants with asymptotic behaviour **A1**

crosses at (4, 0) and
$$\left(0, \frac{4}{5}\right)$$
 A1A1
asymptotes at $x = \frac{5}{2}$ and $y = \frac{1}{2}$ A1A1

[5 marks]

Question 5 continued

(b) (i)
$$x < \frac{5}{2}, x \ge 4$$
 A1A1

(ii)
$$f(x) \ge 0, f(x) \ne \frac{1}{\sqrt{2}} (f(x) \in \mathbb{R})$$
 A1

Note: Follow through from their graph, as long as it is a rectangular hyperbola.

Note: Allow range expressed in terms of y.

[3 marks]

Total [8 marks]

М1

6. (a) attempt to differentiate implicitly *M1*

$$\frac{\mathrm{d}y}{\mathrm{d}x} = x \sec^2 \left(\frac{\pi xy}{4}\right) \left[\frac{\pi}{4} x \frac{\mathrm{d}y}{\mathrm{d}x} + \frac{\pi}{4} y\right] + \tan\left(\frac{\pi xy}{4}\right)$$
 A1A1

Note: Award A1 for each term.

attempt to substitute x = 1, y = 1 into their equation for $\frac{dy}{dx}$

$$\frac{dy}{dx} = \frac{\pi}{2} \frac{dy}{dx} + \frac{\pi}{2} + 1$$

$$\frac{dy}{dx} \left(1 - \frac{\pi}{2}\right) = \frac{\pi}{2} + 1$$
A1

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2+\pi}{2-\pi}$$
 AG

[5 marks]

(b) attempt to use gradient of normal $=\frac{-1}{\frac{dy}{dx}}$ (M1) $=\frac{\pi-2}{\pi}$

$$\pi + 2$$

so equation of normal is $y - 1 = \frac{\pi - 2}{\pi + 2}(x - 1)$ or $y = \frac{\pi - 2}{\pi + 2}x + \frac{4}{\pi + 2}$ A1

[2 marks]

Total [7 marks]

М1

use of at least one "log rule" applied correctly for the first equation 7. $\log_{2} 6x = \log_{2} 2 + 2\log_{2} v$

$$= \log_2 2 + \log_2 y^2$$

= $\log_2 (2y^2)$
 $\Rightarrow 6x = 2y^2$ A1

– 11 –

use of at least one "log rule" applied correctly for the second equation М1 $\log_6(15y-25) = 1 + \log_6 x$

$$= \log_{6} 6 + \log_{6} x$$

$$= \log_{6} 6x$$

$$\Rightarrow 15y - 25 = 6x$$

attempt to eliminate x (or y) from their two equations

$$2y^{2} = 15y - 25$$

M1

$$2y^{2}-15y+25=0$$

$$(2y-5)(y-5)=0$$

$$x = \frac{25}{12}, y = \frac{5}{2},$$
or $x = \frac{25}{3}, y = 5$
A1

Note: x, y values do not have to be "paired" to gain either of the final two **A** marks.

[7 marks]

8.	(a)	attempt to use Pythagoras in triangle OXB	M1
		$\Rightarrow r^2 = R^2 - (h - R)^2$	A1

substitution of their r^2 into formula for volume of cone $V = \frac{\pi r^2 h}{3}$ M1

$$= \frac{\pi h}{3} \left(R^2 - (h - R)^2 \right)$$

= $\frac{\pi h}{3} \left(R^2 - (h^2 + R^2 - 2hR) \right)$ A1

Note: This A mark is independent and may be seen anywhere for the correct expansion of $(h-R)^2$.

$=\frac{\pi h}{3}(2hR-h^2)$ $=\frac{\pi}{3}\left(2Rh^2-h^3\right)$ AG

[4 marks]

Question 8 continued

(b) at max,
$$\frac{dV}{dh} = 0$$

 $\frac{dV}{dh} = \frac{\pi}{3} (4Rh - 3h^2)$
 $\Rightarrow 4Rh = 3h^2$
 $\Rightarrow h = \frac{4R}{3} (\text{since } h \neq 0)$
A1

EITHER

$$V_{\max} = \frac{\pi}{3} \left(2Rh^2 - h^3 \right) \text{ from part (a)}$$

= $\frac{\pi}{3} \left(2R \left(\frac{4R}{3} \right)^2 - \left(\frac{4R}{3} \right)^3 \right)$
= $\frac{\pi}{3} \left(2R \frac{16R^2}{9} - \left(\frac{64R^3}{27} \right) \right)$ A1

OR

OR

$$r^{2} = R^{2} - \left(\frac{4R}{3} - R\right)^{2}$$

$$r^{2} = R^{2} - \frac{R^{2}}{9} = \frac{8R^{2}}{9}$$

$$\Rightarrow V_{\text{max}} = \frac{\pi r^{2}}{3} \left(\frac{4R}{3}\right)$$

$$= \frac{4\pi R}{9} \left(\frac{8R^{2}}{9}\right)$$
A1

THEN

$$=\frac{32\pi R^3}{81}$$

[4 marks]

Total [8 marks]

М1

M1

Section B

9. (a) $3\cos 2x = 4 - 11\cos x$

attempt to form a quadratic in $\cos x$

$$3(2\cos^2 x - 1) = 4 - 11\cos x$$
 A1

 $(6\cos^2 x + 11\cos x - 7 = 0)$ valid attempt to solve their quadratic $(3\cos x + 7)(2\cos x - 1) = 0$

$$\cos x = \frac{1}{2}$$
 A1
 $x = \frac{\pi}{3}, \frac{5\pi}{3}$ A1A1

Note: Ignore any "extra" solutions.

[6 marks]

(b) consider
$$(\pm) \int_{\frac{\pi}{3}}^{\frac{5\pi}{3}} (4 - 11\cos x - 3\cos 2x) dx$$
 M1

$$= (\pm) \left[4x - 11\sin x - \frac{3}{2}\sin 2x \right]_{\frac{\pi}{3}}^{3}$$

Note: Ignore lack of or incorrect limits at this stage.

attempt to substitute their limits into their integral M1 $= \frac{20\pi}{3} - 11\sin\frac{5\pi}{3} - \frac{3}{2}\sin\frac{10\pi}{3} - \left(\frac{4\pi}{3} - 11\sin\frac{\pi}{3} - \frac{3}{2}\sin\frac{2\pi}{3}\right)$ $= \frac{16\pi}{3} + \frac{11\sqrt{3}}{2} + \frac{3\sqrt{3}}{4} + \frac{11\sqrt{3}}{2} + \frac{3\sqrt{3}}{4}$ $= \frac{16\pi}{3} + \frac{25\sqrt{3}}{2}$ A1A1

[5 marks]

M1

A1

M1

A1

(c) attempt to differentiate both functions and equate $-6 \sin 2x = 11 \sin x$ attempt to solve for x $11 \sin x + 12 \sin x \cos x = 0$ $\sin x(11+12 \cos x) = 0$ $\cos x = -\frac{11}{12} \text{ (or } \sin x = 0\text{)}$ (11)

$$\Rightarrow y = 4 - 11 \left(-\frac{11}{12} \right)$$
 M1

$$y = \frac{169}{12} \left(= 14 \frac{1}{12} \right)$$
 A1

[6 marks] Total [17 marks]

A1

– 14 –

10. (a) mode is 0

[1 mark]

(b) (i) attempt at integration by parts (M1)

$$\frac{du}{dx} = \frac{1}{\sqrt{1 - x^2}}, dv = dx$$

$$= x \arcsin x - \int \frac{x dx}{\sqrt{1 - x^2}}$$
A1

$$= x \arcsin x + \sqrt{1 - x^2} (+c)$$
 A1

(ii)
$$\int_{0}^{1} (\pi - \arcsin x) dx = \left[\pi x - x \arcsin x - \sqrt{1 - x^2} \right]_{0}^{1}$$
 A1

$$= \left(\pi - \frac{\pi}{2} - 0 \right) - (0 - 0 - 1) = \frac{\pi}{2} + 1$$

$$= \frac{\pi + 2}{2}$$
A1
$$\int_{0}^{1} k \left(\pi - \arcsin x \right) dx = 1$$
(M1)

Note: This line can be seen (or implied) anywhere.

Note: Do not allow FT A marks from bi to bii.

$$k\left(\frac{\pi+2}{2}\right) = 1$$
$$\Rightarrow k = \frac{2}{2+\pi}$$
AG

[6 marks]

(c) (i) attempt to use product rule to differentiate M1 $\frac{dy}{dx} = x \arcsin x + \frac{x^2}{2\sqrt{1-x^2}} - \frac{1}{4\sqrt{1-x^2}} - \frac{x^2}{4\sqrt{1-x^2}} + \frac{\sqrt{1-x^2}}{4}$ A2

Note: Award A2 for all terms correct, A1 for 4 correct terms.

$$= x \arcsin x + \frac{2x^2}{4\sqrt{1-x^2}} - \frac{1}{4\sqrt{1-x^2}} - \frac{x^2}{4\sqrt{1-x^2}} + \frac{1-x^2}{4\sqrt{1-x^2}}$$

Note: Award **A1** for equivalent combination of correct terms over a common denominator.

 $= x \arcsin x$

AG

Question 10 continued

(ii)
$$E(X) = k \int_{0}^{1} x(\pi - \arcsin x) dx$$

$$= k \int_{0}^{1} (\pi x - x \arcsin x) dx$$

$$= k \left[\frac{\pi x^{2}}{2} - \frac{x^{2}}{2} \arcsin x + \frac{1}{4} \arcsin x - \frac{x}{4} \sqrt{1 - x^{2}} \right]_{0}^{1}$$

A1A1
Note: Award **A1** for first term, **A1** for next 3 terms.

$$= k \left[\left(\frac{\pi}{2} - \frac{\pi}{4} + \frac{\pi}{8} \right) - (0) \right]$$

A1

$$= \left(\frac{2}{2+\pi}\right)\frac{3\pi}{8}$$

$$3\pi$$
A1

$$=\frac{3\pi}{4(\pi+2)}$$
 AG

[9 marks]

[1 mark]

[1 mark]

Total [16 marks]

A1

A1

11. (a) translation k units to the left (or equivalent)

(b) range is $(g(x) \in)\mathbb{R}$

Question 11 continued

(d) at P ln
$$(x+k) = \ln(-x)$$

attempt to solve $x+k = -x$ (or equivalent) (M1)
 $x = -\frac{k}{2} \Rightarrow y = \ln\left(\frac{k}{2}\right)$ (or $y = \ln\left|\frac{k}{2}\right|$) A1
 $P\left(-\frac{k}{2}, \ln\frac{k}{2}\right)$ (or $P\left(-\frac{k}{2}, \ln\left|\frac{k}{2}\right|\right)$)

[2 marks]

Question 11 continued

(e)	attempt to differentiate $\ln(-x)$ or $\ln x $	(M1)	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{x}$	A1	
	at P, $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-2}{k}$	A1	
	recognition that tangent passes through origin $\Rightarrow \frac{y}{x} = \frac{dy}{dx}$	(M1)	
	$\frac{\ln\left(\frac{k}{2}\right)}{-\frac{k}{2}} = \frac{-2}{k}$	A1	
	$\ln\left(\frac{k}{2}\right) = 1$	(A1)	
	$\Rightarrow k = 2e$	A1	[7 marks]
Not	te: For candidates who explicitly differentiate $\ln(x)$ (rather than $\ln(-x)$		
or $\ln x $, award M0A0A1M1A1A1A1 .			
L		Total [17 marks]