Markscheme

May 2019

Mathematics

Higher level

Paper 1

Section A

1. attempting to form two equations involving u_{1} and d

$$
\begin{aligned}
& \left(u_{1}+2 d\right)+\left(u_{1}+7 d\right)=1 \text { and } \frac{7}{2}\left[2 u_{1}+6 d\right]=35 \\
& 2 u_{1}+9 d=1 \\
& 14 u_{1}+42 d=70\left(2 u_{1}+6 d=10\right)
\end{aligned}
$$

Note: Award A1 for any two correct equations

attempting to solve their equations: M1
$u_{1}=14, d=-3$
2. (a) (i) $\overrightarrow{\mathrm{AB}}=\left(\begin{array}{c}0 \\ 2 \\ -2\end{array}\right)$
(ii) $\quad \overrightarrow{\mathrm{AC}}=\left(\begin{array}{c}3 \\ 1 \\ -2\end{array}\right)$

Note: Accept row vectors or equivalent.
[2 marks]
(b) METHOD 1
attempt at vector product using $\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AC}}$.
$\pm(2 \boldsymbol{i}+6 \boldsymbol{j}+6 \boldsymbol{k})$
A1
attempt to use area $=\frac{1}{2}|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}|$ M1
$=\frac{\sqrt{76}}{2}(=\sqrt{19})$

A1
[4 marks]
continued...

Question 2 continued

METHOD 2

attempt to use $\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}=|\overrightarrow{\mathrm{AB}}||\overrightarrow{\mathrm{AC}}| \cos \theta$
$\left(\begin{array}{c}0 \\ 2 \\ -2\end{array}\right) \cdot\left(\begin{array}{c}3 \\ 1 \\ -2\end{array}\right)=\sqrt{0^{2}+2^{2}+(-2)^{2}} \sqrt{3^{2}+1^{2}+(-2)^{2}} \cos \theta$
$6=\sqrt{8} \sqrt{14} \cos \theta$
$\cos \theta=\frac{6}{\sqrt{8} \sqrt{14}}=\frac{6}{\sqrt{112}}$
attempt to use area $=\frac{1}{2}|\overrightarrow{\mathrm{AB}}||\overrightarrow{\mathrm{AC}}| \sin \theta$
$=\frac{1}{2} \sqrt{8} \sqrt{14} \sqrt{1-\frac{36}{112}}\left(=\frac{1}{2} \sqrt{8} \sqrt{14} \sqrt{\frac{76}{112}}\right)$
$=\frac{\sqrt{76}}{2}(=\sqrt{19})$
3. $g(x)=f(x+2)\left(=(x+2)^{4}-6(x+2)^{2}-2(x+2)+4\right)$
attempt to expand $(x+2)^{4}$
$(x+2)^{4}=x^{4}+4\left(2 x^{3}\right)+6\left(2^{2} x^{2}\right)+4\left(2^{3} x\right)+2^{4}$
$=x^{4}+8 x^{3}+24 x^{2}+32 x+16$
$g(x)=x^{4}+8 x^{3}+24 x^{2}+32 x+16-6\left(x^{2}+4 x+4\right)-2 x-4+4$
$=x^{4}+8 x^{3}+18 x^{2}+6 x-8$
Note: For correct expansion of $f(x-2)=x^{4}-8 x^{3}+18 x^{2}-10 x$ award max MOM1(A1)AOA1.
4. $u=\sin x \Rightarrow \mathrm{~d} u=\cos x \mathrm{~d} x$
valid attempt to write integral in terms of u and $\mathrm{d} u$
$\int \frac{\cos ^{3} x \mathrm{~d} x}{\sqrt{\sin x}}=\int \frac{\left(1-u^{2}\right) \mathrm{d} u}{\sqrt{u}}$
$=\int\left(u^{-\frac{1}{2}}-u^{\frac{3}{2}}\right) \mathrm{d} u$
$=2 u^{\frac{1}{2}}-\frac{2 u^{\frac{5}{2}}}{5}(+c)$
$=2 \sqrt{\sin x}-\frac{2(\sqrt{\sin x})^{5}}{5}(+c)$ or equivalent
5. (a)

correct shape: two branches in correct quadrants with asymptotic behaviour
A1
crosses at $(4,0)$ and $\left(0, \frac{4}{5}\right)$
asymptotes at $x=\frac{5}{2}$ and $y=\frac{1}{2}$

Question 5 continued
(b) (i) $x<\frac{5}{2}, x \geq 4$

A1A1
(ii) $\quad f(x) \geq 0, f(x) \neq \frac{1}{\sqrt{2}}(f(x) \in \mathbb{R})$

Note: Follow through from their graph, as long as it is a rectangular hyperbola.
Note: Allow range expressed in terms of y.

Total [8 marks]

6. (a) attempt to differentiate implicitly

M1
$\frac{\mathrm{d} y}{\mathrm{~d} x}=x \sec ^{2}\left(\frac{\pi x y}{4}\right)\left[\frac{\pi}{4} x \frac{\mathrm{~d} y}{\mathrm{~d} x}+\frac{\pi}{4} y\right]+\tan \left(\frac{\pi x y}{4}\right)$
A1A1

Note: Award A1 for each term.

attempt to substitute $x=1, y=1$ into their equation for $\frac{\mathrm{d} y}{\mathrm{~d} x}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\pi}{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+\frac{\pi}{2}+1$
$\frac{\mathrm{d} y}{\mathrm{~d} x}\left(1-\frac{\pi}{2}\right)=\frac{\pi}{2}+1$
A1
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2+\pi}{2-\pi}$
AG
(b) attempt to use gradient of normal $=\frac{-1}{\frac{\mathrm{~d} y}{\mathrm{~d} x}}$
$=\frac{\pi-2}{\pi+2}$
so equation of normal is $y-1=\frac{\pi-2}{\pi+2}(x-1)$ or $y=\frac{\pi-2}{\pi+2} x+\frac{4}{\pi+2}$
7. use of at least one "log rule" applied correctly for the first equation
$\log _{2} 6 x=\log _{2} 2+2 \log _{2} y$
$=\log _{2} 2+\log _{2} y^{2}$
$=\log _{2}\left(2 y^{2}\right)$
$\Rightarrow 6 x=2 y^{2}$
use of at least one "log rule" applied correctly for the second equation
$\log _{6}(15 y-25)=1+\log _{6} x$
$=\log _{6} 6+\log _{6} x$
$=\log _{6} 6 x$
$\Rightarrow 15 y-25=6 x$
attempt to eliminate x (or y) from their two equations
M1
$2 y^{2}=15 y-25$
$2 y^{2}-15 y+25=0$
$(2 y-5)(y-5)=0$
$x=\frac{25}{12}, y=\frac{5}{2}$,
or $x=\frac{25}{3}, y=5$
Note: x, y values do not have to be "paired" to gain either of the final two \boldsymbol{A} marks.
8. (a) attempt to use Pythagoras in triangle OXB

$$
\Rightarrow r^{2}=R^{2}-(h-R)^{2}
$$

A1
substitution of their r^{2} into formula for volume of cone $V=\frac{\pi r^{2} h}{3}$

$$
\begin{aligned}
& =\frac{\pi h}{3}\left(R^{2}-(h-R)^{2}\right) \\
& =\frac{\pi h}{3}\left(R^{2}-\left(h^{2}+R^{2}-2 h R\right)\right)
\end{aligned}
$$

Note: This A mark is independent and may be seen anywhere for the correct expansion of $(h-R)^{2}$.

$$
\begin{aligned}
& =\frac{\pi h}{3}\left(2 h R-h^{2}\right) \\
& =\frac{\pi}{3}\left(2 R h^{2}-h^{3}\right)
\end{aligned}
$$

Question 8 continued
(b) at max, $\frac{\mathrm{d} V}{\mathrm{~d} h}=0$

$$
\begin{aligned}
& \frac{\mathrm{d} V}{\mathrm{~d} h}=\frac{\pi}{3}\left(4 R h-3 h^{2}\right) \\
& \Rightarrow 4 R h=3 h^{2} \\
& \Rightarrow h=\frac{4 R}{3}(\text { since } h \neq 0)
\end{aligned}
$$

EITHER

$$
\begin{aligned}
& V_{\max }=\frac{\pi}{3}\left(2 R h^{2}-h^{3}\right) \text { from part (a) } \\
& =\frac{\pi}{3}\left(2 R\left(\frac{4 R}{3}\right)^{2}-\left(\frac{4 R}{3}\right)^{3}\right) \\
& =\frac{\pi}{3}\left(2 R \frac{16 R^{2}}{9}-\left(\frac{64 R^{3}}{27}\right)\right)
\end{aligned}
$$

OR
$r^{2}=R^{2}-\left(\frac{4 R}{3}-R\right)^{2}$
$r^{2}=R^{2}-\frac{R^{2}}{9}=\frac{8 R^{2}}{9}$
$\Rightarrow V_{\text {max }}=\frac{\pi r^{2}}{3}\left(\frac{4 R}{3}\right)$
$=\frac{4 \pi R}{9}\left(\frac{8 R^{2}}{9}\right)$

THEN

$$
=\frac{32 \pi R^{3}}{81}
$$

Section B

9. (a) $3 \cos 2 x=4-11 \cos x$ attempt to form a quadratic in $\cos x \quad$ M1

$$
\begin{aligned}
& 3\left(2 \cos ^{2} x-1\right)=4-11 \cos x \\
& \left(6 \cos ^{2} x+11 \cos x-7=0\right)
\end{aligned}
$$

valid attempt to solve their quadratic
$(3 \cos x+7)(2 \cos x-1)=0$
$\cos x=\frac{1}{2}$
$x=\frac{\pi}{3}, \frac{5 \pi}{3}$
Note: Ignore any "extra" solutions.
(b) consider $(\pm) \int_{\frac{\pi}{3}}^{\frac{5 \pi}{3}}(4-11 \cos x-3 \cos 2 x) \mathrm{d} x$

$$
=(\pm)\left[4 x-11 \sin x-\frac{3}{2} \sin 2 x\right]_{\frac{\pi}{3}}^{\frac{5 \pi}{3}}
$$

Note: Ignore lack of or incorrect limits at this stage.
attempt to substitute their limits into their integral

$$
\begin{aligned}
& =\frac{20 \pi}{3}-11 \sin \frac{5 \pi}{3}-\frac{3}{2} \sin \frac{10 \pi}{3}-\left(\frac{4 \pi}{3}-11 \sin \frac{\pi}{3}-\frac{3}{2} \sin \frac{2 \pi}{3}\right) \\
& =\frac{16 \pi}{3}+\frac{11 \sqrt{3}}{2}+\frac{3 \sqrt{3}}{4}+\frac{11 \sqrt{3}}{2}+\frac{3 \sqrt{3}}{4} \\
& =\frac{16 \pi}{3}+\frac{25 \sqrt{3}}{2}
\end{aligned}
$$

(c) attempt to differentiate both functions and equate M1
$-6 \sin 2 x=11 \sin x \quad$ A1
attempt to solve for x M1
$11 \sin x+12 \sin x \cos x=0$
$\sin x(11+12 \cos x)=0$
$\cos x=-\frac{11}{12}($ or $\sin x=0)$
$\Rightarrow y=4-11\left(-\frac{11}{12}\right)$
$y=\frac{169}{12}\left(=14 \frac{1}{12}\right)$
10. (a) mode is 0

A1
[1 mark]
(b) (i) attempt at integration by parts

$$
\begin{aligned}
& \frac{\mathrm{d} u}{\mathrm{~d} x}=\frac{1}{\sqrt{1-x^{2}}}, \mathrm{~d} v=\mathrm{d} x \\
& =x \arcsin x-\int \frac{x \mathrm{~d} x}{\sqrt{1-x^{2}}} \\
& =x \arcsin x+\sqrt{1-x^{2}}(+c)
\end{aligned}
$$

Note: This line can be seen (or implied) anywhere.
Note: Do not allow FT A marks from bi to bii.

$$
\begin{aligned}
& k\left(\frac{\pi+2}{2}\right)=1 \\
& \Rightarrow k=\frac{2}{2+\pi}
\end{aligned}
$$

(c) (i) attempt to use product rule to differentiate

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=x \arcsin x+\frac{x^{2}}{2 \sqrt{1-x^{2}}}-\frac{1}{4 \sqrt{1-x^{2}}}-\frac{x^{2}}{4 \sqrt{1-x^{2}}}+\frac{\sqrt{1-x^{2}}}{4}
$$

Note: Award A2 for all terms correct, A1 for 4 correct terms.

$$
=x \arcsin x+\frac{2 x^{2}}{4 \sqrt{1-x^{2}}}-\frac{1}{4 \sqrt{1-x^{2}}}-\frac{x^{2}}{4 \sqrt{1-x^{2}}}+\frac{1-x^{2}}{4 \sqrt{1-x^{2}}}
$$

Note: Award A1 for equivalent combination of correct terms over a common denominator.

$$
=x \arcsin x
$$

Question 10 continued
(ii) $\mathrm{E}(X)=k \int_{0}^{1} x(\pi-\arcsin x) \mathrm{d} x$
$=k \int_{0}^{1}(\pi x-x \arcsin x) d x$
$=k\left[\frac{\pi x^{2}}{2}-\frac{x^{2}}{2} \arcsin x+\frac{1}{4} \arcsin x-\frac{x}{4} \sqrt{1-x^{2}}\right]_{0}^{1}$
A1A1

Note: Award $\boldsymbol{A 1}$ for first term, A1 for next 3 terms.

$$
\begin{align*}
& =k\left[\left(\frac{\pi}{2}-\frac{\pi}{4}+\frac{\pi}{8}\right)-(0)\right] \tag{A1}\\
& =\left(\frac{2}{2+\pi}\right) \frac{3 \pi}{8} \tag{A1}\\
& =\frac{3 \pi}{4(\pi+2)}
\end{align*}
$$

11. (a) translation k units to the left (or equivalent)

A1
[1 mark]
(b) range is $(g(x) \in) \mathbb{R}$

A1
[1 mark]
continued...

Question 11 continued
(c)

Note: Do not penalise candidates if their graphs "cross" as $x \rightarrow \pm \infty$.
Note: Do not award FT marks from the candidate's part (a) to part (c).
(d) at $\mathrm{P} \ln (x+k)=\ln (-x)$
attempt to solve $x+k=-x$ (or equivalent)
$x=-\frac{k}{2} \Rightarrow y=\ln \left(\frac{k}{2}\right)\left(\right.$ or $y=\ln \left|\frac{k}{2}\right|$)
$\mathrm{P}\left(-\frac{k}{2}, \ln \frac{k}{2}\right)\left(\right.$ or $\mathrm{P}\left(-\frac{k}{2}, \ln \left|\frac{k}{2}\right|\right)$)

Question 11 continued
(e) attempt to differentiate $\ln (-x)$ or $\ln |x|$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{x}$
at $\mathrm{P}, \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-2}{k}$
recognition that tangent passes through origin $\Rightarrow \frac{y}{x}=\frac{\mathrm{d} y}{\mathrm{~d} x}$
$\frac{\ln \left(\frac{k}{2}\right)}{-\frac{k}{2}}=\frac{-2}{k}$
$\ln \left(\frac{k}{2}\right)=1$

$$
\begin{equation*}
\Rightarrow k=2 \mathrm{e} \tag{A1}
\end{equation*}
$$

Note: For candidates who explicitly differentiate $\ln (x)$ (rather than $\ln (-x)$ or $\ln |x|$, award M0A0A1M1A1A1A1.

