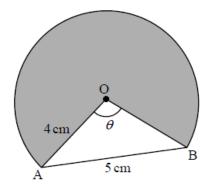

Trig review [164 marks]

The following diagram shows triangle ABC, with AB = 6 and AC = 8.

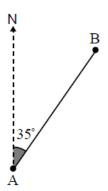
diagram not to scale


1a.	Given	that cos	$\hat{A} =$	$\frac{5}{6}$	find	the	value	of \sin	\hat{A} .
-----	-------	----------	-------------	---------------	------	-----	-------	-----------	-------------

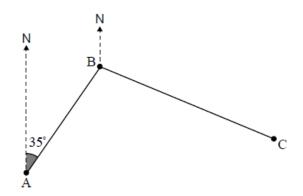
[3 marks]

 nd the area of triangle ABC.	[2 m

The following diagram shows part of a circle with centre O and radius $4\,\mathrm{cm}$.


Chord AB has a length of 5 cm and $A\hat{O}B = \theta$.

ind the value of $ heta$, giving your answer in radians.	[3 mark


nd the area of the shaded region.	[3 m

Adam sets out for a hike from his camp at point A. He hikes at an average speed of $4.2\,\text{km/h}$ for 45 minutes, on a bearing of 035° from the camp, until he stops for a break at point B.

 the distance from point A to point B.	[2 marks

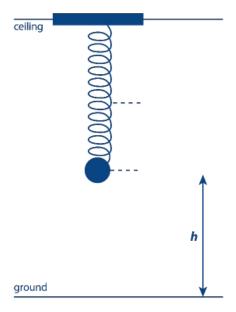
Adam leaves point B on a bearing of 114° and continues to hike for a distance of 4.6 km until he reaches point C.

3b. Show that $A\hat{B}C$ is 101°. [2 marks]

ind the distance from the camp to point C.	[3 ma
ind $\operatorname{B}\overset{\wedge}{\operatorname{C}}\operatorname{A}$.	[3 ma

-ır	nd the bearing that Jacob must take to point C.	[3 mark

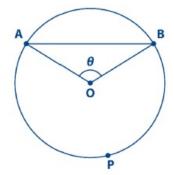
Adam's friend Jacob wants to hike directly from the camp to meet Adam at point C


	der a function f , such that $f(x)=5.8\sin\left(rac{\pi}{6}(x+1) ight)+b$, $0\leq x\leq 10$,	,
$\in \mathbb{R}$		

. Fi	nd the value of b .	[2 mark.
. He	ence, find the value of f (6).	[2 mark
. He	ence, find the value of $f(6)$.	[2 mark

A second function g is given by $g(x) \equiv p\sin\left(\frac{\pi}{9}(x-5.75)\right) + q$, $0 \le x$ $q \in \mathbb{R}$.	\leq 10; p ,
The function g passes through the points (3, 2.5) and (6, 15.1).	
Find the value of p and the value of q .	[5 marks]
	$q \in \mathbb{R}.$ The function g passes through the points (3, 2.5) and (6, 15.1).

The following diagram shows a ball attached to the end of a spring, which is suspended from a ceiling.


The height, h metres, of the ball above the ground at time t seconds after being released can be modelled by the function $h(t)=0.4\cos(\pi t)+1.8$ where $t\geq 0$.

Find the height of the ball above the ground when it is released.	[2 mark

	eight of the ball above the ground.	[2 ma
ow that the ball take e ground for the firs	kes 2 seconds to return to its initial height a st time.	bove [2 m

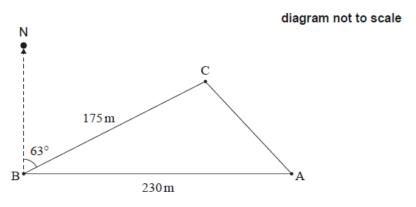
The following diagram shows a circle with centre \boldsymbol{O} and radius $\boldsymbol{3}.$

Points $\boldsymbol{A},\,\boldsymbol{P}$ and \boldsymbol{B} lie on the circumference of the circle.

Chord [AB] has length L and $A\widehat{O}B=\theta$ radians.

now that arc $ ext{APB}$ has length $6\pi-3 heta$.	[2 marks

6b. Show that $L=\sqrt{18-18\cos heta}$.	[2 marks]

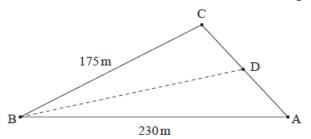

m Arc~APB is twice the length of chord $ m [AB]$.	[3 mark
Find the value of $ heta$.	
Consider $f(x)=4\sinx+2$. 5 and $g(x)=4\sinig(x-rac{3\pi}{2}ig)$ and $g(x)=4\sinig(x-rac{3\pi}{2}ig)$	$(a,b)+2.5+q$, where $x\in\mathbb{R}$
and $q>0.$ The graph of g is obtained by two transformations of the	e graph of f .
and $q>0.$	e graph of f .
and $q>0.$ The graph of g is obtained by two transformations of the	e graph of f .
and $q>0.$ The graph of g is obtained by two transformations of the	e graph of f .
and $q>0.$ The graph of g is obtained by two transformations of the	e graph of f .
and $q>0.$ The graph of g is obtained by two transformations of the	e graph of f .
and $q>0.$ The graph of g is obtained by two transformations of the	

ven that $g(x) \geq 7$, find the smallest value of r .	[5 m

A farmer is placing posts at points $A,\,B,$ and C in the ground to mark the boundaries of a triangular piece of land on his property.

From point A, he walks due west 230 metres to point B. From point B, he walks 175 metres on a bearing of $063\,^\circ$ to reach point C.

This is shown in the following diagram.



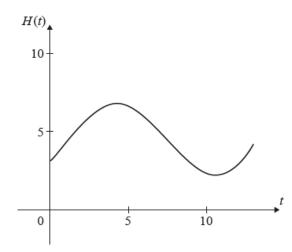
8a. Find the distance from point ${\bf A}$ to point ${\bf C}$.	[4 marks]

·ınc	I the area of this piece of land.	[2 m
inc	r CÂB.	[3 m
inc	r CÂB.	[3 m
inc	r CÂB.	[3 m
inc	r CÂB.	[3 m
: : :	i CÂB.	[3 m
inc	ı CÂB.	[3 m

The farmer wants to divide the piece of land into two sections. He will put a post at point D, which is between A and C. He wants the boundary BD to divide the piece of land such that the sections have equal area. This is shown in the following diagram.

diagram not to scale

8d.	Find	the	distance	from	point B	to	point	D
-----	------	-----	----------	------	---------	----	-------	---


[5 marks]

1

 	 	• • • • • • • • • • • • • • • • • • • •	

The height of water, in metres, in Dungeness harbour is modelled by the function $H(t) = a \sin(b(t-c)) + d$, where t is the number of hours after midnight, and a, b, c and d are constants, where a > 0, b > 0 and c > 0.

The following graph shows the height of the water for $13\ \text{hours}$, starting at midnight.

The first high tide occurs at 04:30 and the next high tide occurs 12 hours later. Throughout the day, the height of the water fluctuates between $2.\ 2\ m$ and $6.\ 8\ m.$

[1 mark]

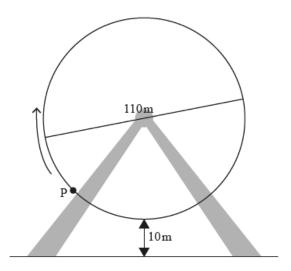
All heights are given correct to one decimal place.

10a. Show that $b = \frac{\pi}{6}$.

. Fir	nd the value of $a.$	[2 ma

. Find the value of a .	[2 mark
. Find the smallest possible value of c .	[3 mark

Loe. Find the height of the water at $12:00$.	[2 marks]
L0f. Determine the number of hours, over a 24-hour period, for which the tide is higher than 5 metres.	[3 marks]

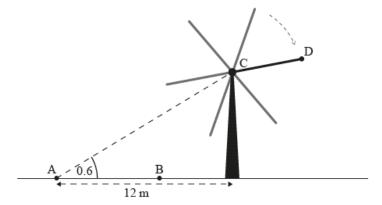

10g. A fisherman notes that the water height at nearby Folkestone harbour	[2 marks]
follows the same sinusoidal pattern as that of Dungeness harbour, with	
the exception that high tides (and low tides) occur 50 minutes earlier that	an at
Dungeness.	

Find a suitable equation that may be used to model the tidal height of water at Folkestone harbour.

 •

11. A Ferris wheel with diameter 110 metres rotates at a constant speed. [5 marks] The lowest point on the wheel is 10 metres above the ground, as shown on the following diagram. P is a point on the wheel. The wheel starts moving with P at the lowest point and completes one revolution in 20 minutes.

diagram not to scale



The height, h metres, of P above the ground after t minutes is given by $h(t)=a\cos(bt)+c$, where $a,b,c\in\mathbb{R}$.

Find the values of a, b and c.

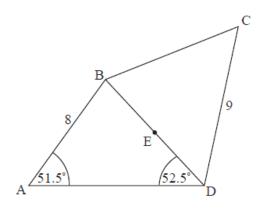
The six blades of a windmill rotate around a centre point C. Points A and B and the base of the windmill are on level ground, as shown in the following diagram.

From point A the angle of elevation of point C is 0.6 radians.

12a	. Gi he	Ve eig	en gh	t t	ha of	at p	p 00	o ir	ir nt	nt (<i>F</i>	<i>1</i> a	is b	٥\ ا	1: ve	2 e	r ti	n h	e e	tr g	re Jr	0) L	fı 1	rc n(or d.	Υ) '	tł	16	9	b	а	S	e	C	of	t	h	е	١	Vi	n	d	n	nil	ΙΙ,	1	ir	10	t	tl	he	9	[2	2	n	7â	ar	ks]

An observer walks 7 metres from point A to point B.

12b. Find the angle of elevation of point C from point B. [2 marks]

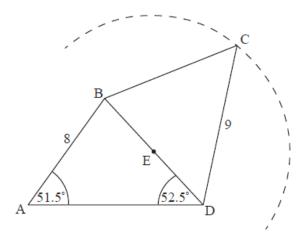

The observer keeps walking until he is standing directly under point C. The observer has a height of $1.\,8$ metres, and as the blades of the windmill rotate, the end of each blade passes $2.\,5$ metres over his head.

-ind the length of each blade of the windmill.	[2 mar
One of the blades is painted a different colour than the olade is labelled point D . The height h , in metres, of point h be modelled by the function $h(t) = m \cos\left(\frac{3\pi}{2}t\right) + g$ where	
lade is labelled point ${ m D}.$ The height h , in metres, of poin an be modelled by the function $h(t){ m =}\ p\cosig(rac{3\pi}{10}tig){ m +}q$, when $t=0$, point ${ m D}$ is at its maximum height.	
lade is labelled point ${ m D}.$ The height h , in metres, of poir an be modelled by the function $h(t) {= p \cos \left(rac{3\pi}{10}t ight)} {+ q}$, w	where t is in seconds and
lade is labelled point ${ m D}.$ The height h , in metres, of poir an be modelled by the function $h(t){ m =}\ p\cosig(rac{3\pi}{10}tig){ m +}q$, w, $q\in\mathbb{R}.$ When $t=0$, point ${ m D}$ is at its maximum height.	where t is in seconds and
lade is labelled point ${ m D}.$ The height h , in metres, of poir an be modelled by the function $h(t){ m =}\ p\cosig(rac{3\pi}{10}tig){ m +}q$, w, $q\in\mathbb{R}.$ When $t=0$, point ${ m D}$ is at its maximum height.	where t is in seconds and
lade is labelled point ${ m D}.$ The height h , in metres, of poir an be modelled by the function $h(t){ m =}\ p\cosig(rac{3\pi}{10}tig){ m +}q$, w, $q\in\mathbb{R}.$ When $t=0$, point ${ m D}$ is at its maximum height.	where t is in seconds and
lade is labelled point ${ m D}.$ The height h , in metres, of poir an be modelled by the function $h(t){ m =}\ p\cosig(rac{3\pi}{10}tig){ m +}q$, w, $q\in\mathbb{R}.$ When $t=0$, point ${ m D}$ is at its maximum height.	where t is in seconds and
lade is labelled point ${ m D}.$ The height h , in metres, of poir an be modelled by the function $h(t){ m =}\ p\cosig(rac{3\pi}{10}tig){ m +}q$, w, $q\in\mathbb{R}.$ When $t=0$, point ${ m D}$ is at its maximum height.	where t is in seconds and
lade is labelled point ${ m D}.$ The height h , in metres, of poir an be modelled by the function $h(t){ m =}\ p\cosig(rac{3\pi}{10}tig){ m +}q$, w, $q\in\mathbb{R}.$ When $t=0$, point ${ m D}$ is at its maximum height.	where t is in seconds and
lade is labelled point ${ m D}.$ The height h , in metres, of poir an be modelled by the function $h(t){ m =}\ p\cosig(rac{3\pi}{10}tig){ m +}q$, w, $q\in\mathbb{R}.$ When $t=0$, point ${ m D}$ is at its maximum height.	where t is in seconds and
lade is labelled point ${ m D}.$ The height h , in metres, of poir an be modelled by the function $h(t){ m =}\ p\cosig(rac{3\pi}{10}tig){ m +}q$, w, $q\in\mathbb{R}.$ When $t=0$, point ${ m D}$ is at its maximum height.	

• • • • • • • • • • • • • • • • • • • •	 	 	

Using geometry software, Pedro draws a quadrilateral $ABCD.\ AB=8\ cm$ and $CD=9\ cm.$ Angle $BAD=51.\ 5\degree$ and angle $ADB=52.\ 5\degree.$ This information is shown in the diagram.

diagram not to scale



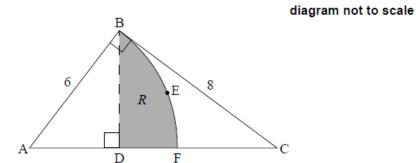
[3 marks]

Show tha	it angle I	EDC = 48	8. 0°, corr	ect to three	e significant fi	gures.	[4 m
				• • • • • • • • • • • • • • • • • • • •			
Calculate	the area	a of triang	le BDC.				[3 m
alculate	the area	of triang	le BDC.				[3 m
alculate	the area	of triang	le BDC.				[3 m
alculate	the area	a of triang	Jle BDC.				[3 m
Calculate	the area	a of triang	Jle BDC.				[3 m
Calculate	the area	a of triang	le BDC.				[3 m
Calculate	the area	of triang	le BDC.				[3 m
alculate	the area	of triang	le BDC.				[3 m

13d. Pedro draws a circle, with centre at point E, passing through point C. *[5 marks]* Part of the circle is shown in the diagram.

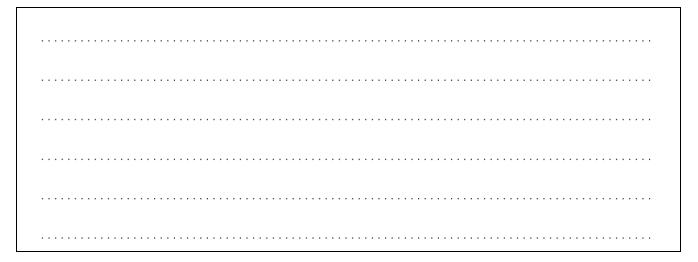
diagram not to scale

Show that point \boldsymbol{A} lies outside this circle. Justify your reasoning.

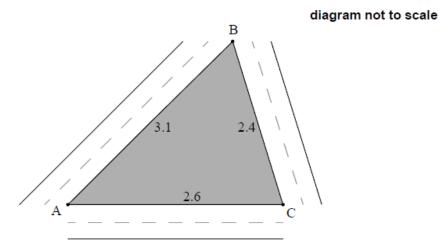

The following diagram shows a right-angled triangle, ABC , with $AC=10\,cm$, $AB=6\,cm$ and $BC=8\,cm$.

The points D and F lie on $\left[AC\right] .$

[BD] is perpendicular to [AC].


 \overrightarrow{BEF} is the arc of a circle, centred at A.

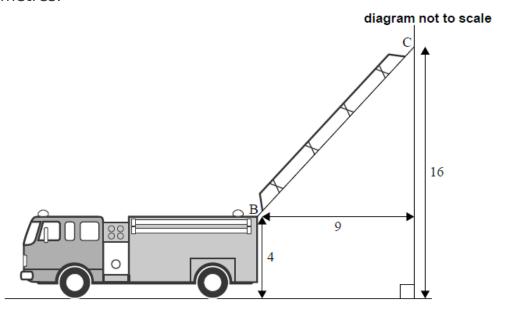
The region R is bounded by $[\mathrm{BD}]$, $[\mathrm{DF}]$ and arc BEF .


10

 $14a. \, {\sf Find} \, \, B\widehat{A}C.$ [2 marks]

14b. Find the area of R .	[5 marks]

Three airport runways intersect to form a triangle, ABC. The length of AB is 3.1 km, AC is 2.6 km, and BC is 2.4 km.



A company is hired to cut the grass that grows in triangle ABC, but they need to know the area.

15a. Find the size, in degrees, of angle BÂC.	[3 marks]

nd the area, in km ² , of triang	gle ABC. [3 m

A ladder on a fire truck has its base at point B which is 4 metres above the ground. The ladder is extended and its other end rests on a vertical wall at point C, 16 metres above the ground. The horizontal distance between B and C is 9 metres.

16a. Find the angle of elevation from B to C.	[3 marks]

nd the maximum height on the wall that can be reached by the ladder o	

of $a(x) = 5f(2x)$	
Let $g\left(x ight) =5f\left(2x ight) .$	
	[2 ma
Let $g\left(x ight)=5f\left(2x ight).$ Find the range of g .	[2 ma

The function g can be written in the form $g\left(x\right)=10\sin\left(bx\right)+c$. 17c. Find the value of b and of c. [3 marks] 17d. Find the period of g. [2 marks]

|
 |
|------|------|------|------|------|------|------|
|
 |
|
 |
|
 |
|
 |
|
 |
|
 |
|
 |

© International Baccalaureate Organization 2022 International Baccalaureate® - Baccalauréat International® - Bachillerato Internacional®

Printed for 2 SPOLECZNE LICEUM