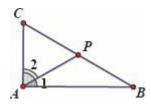
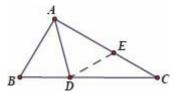
Solutions to Exercises

Chapter 1

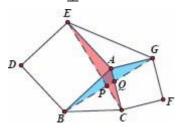
1.1 Since AP = BP, we have $\angle 1 = \angle B$. Now $\angle 2 = 90^{\circ} - \angle 1 = 90^{\circ} - \angle B = \angle C$, which implies AP = CP. The conclusion follows.



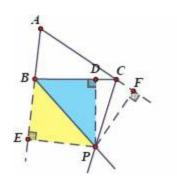
1.2 Choose E on AC such that AB = AE Since AD bisects $_BAC$, one sees that $\triangle ABD \cong \triangle AED$ (S.A.S.). Hence, BD = DE and $_AED = _ABD = 2_C$. Since $_AED = _C + _CDE$, we conclude that $\angle C = \angle CDE$, i.e., CE = DE. Now CE = DE = BD. We have AC = AE + CE = AB + BD.

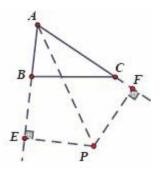


1.3 It is easy to see that $\triangle ACE \cong \triangle AGB$ (S.A.S.). Hence, we have BG = CE and $\angle ACE = \angle AGB$. Let BG and CE intersect at P. Notice that $\angle CPG = \angle CAG = 90^{\circ}$ (Example 1.1.6) and hence, $BG \mid CE$.



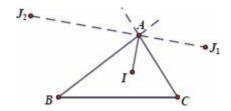
1.4 Refer to the left diagram below. Let BP,CP bisect the exterior angles of $\angle B$, $\angle C$ respectively. We are to show AP bisects $\angle A$. Draw $PD \perp BC$ at D, $PE \perp AB$ at E and $PF \perp AC$ at F. It is easy to see that $\triangle BPE \cong \triangle BPD$ (A.A.S.) and hence, PD = PE. Similarly, PD = PF.





Now we have PE = PF. Refer to the right diagram above. One sees that $\triangle APE \cong \triangle APF$ (H.L.) and hence, AP bisects $\angle A$.

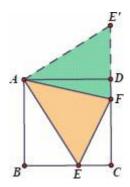
1.5 Connect AJ_1 . Since AI and AJ_1 are the angle bisectors of neighboring supplementary angles, we have $AI \perp AJ_1$ (Example 1.1.9, or one may simply see that



$$\angle LAJ_1 = \angle CAI + \angle CAJ_1 = \frac{1}{2} \angle BAC + \frac{1}{2} (180^\circ - \angle BAC) = 90^\circ$$
.)

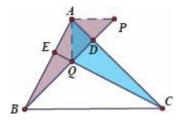
Similarly, $AI \perp AJ_2$. Now $J_1AJ_2 = 90^\circ + 90^\circ = 180^\circ$ which implies A, J_1 , J_2 are collinear and hence, $AI \mid J_1J_2$.

1.6 Choose E' on CD extended such that DE' = BE. Connect AE' It is easy to see that $\triangle ABE \cong \triangle ADE'$ (S.A.S.). Hence, AE = AE' and $\angle BAE = \angle DAE$.' Now we see that $\angle EAF = \angle E'AF = 45^\circ$ and $\triangle AEF \cong \triangle AE'F$ (S.A.S.). Hence, EF = E'F = DF + BE.



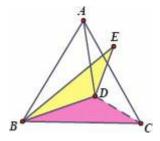
1.7 We have $\angle ABD = \angle ACE = 90^{\circ} - \angle BAC$. Hence, $\triangle ABP \cong \triangle QCA$ (S.A.S.). It

follows that AQ = AP and $\angle QAD = \angle APD = 90^{\circ} - \angle PAC$, i.e., $\angle QAD + \angle PAC = \angle PAQ = 90^{\circ}$. Thus, $\angle AQP = 45^{\circ}$.



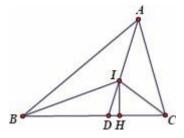
1.8 Connect *CD*. Since BE = AB = BC and BD bisects $\angle CBE$, we have $\triangle BCD \cong \triangle BED$ (S.A.S.). Hence, $\angle BED = \angle BCD$.

Since AD = BD, D (and similarly C) lie on the perpendicular bisector of AB, which is indeed the line CD. It follows that CD bisects $\angle ACB$.

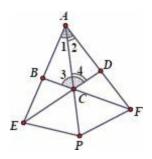


Now
$$\angle BED = \angle BCD = \frac{1}{2} \angle ACB = 30^{\circ}$$
.

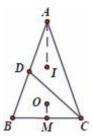
1.9 Since *I* is the incenter, *CI* bisects $\angle C$. Theorem 1.3.3 gives $\angle AIB = 90^{\circ} + \frac{1}{2} \angle C$. Hence, $\angle BID = 180^{\circ} \cdot \angle AIB = 90^{\circ} + \frac{1}{2} \angle C$. = $90^{\circ} - \angle BCI = \angle CIH$.



1.10 Since $\angle 1 = \angle 2$ and $\angle 3 = \angle 4$, we have $\triangle ABC \cong \triangle ADC$ (A.A.S.). Hence, AB = AD and $\angle ABF = \angle ADE$. Now $\triangle ABF \cong \triangle ADE$ (A.A.S.), which implies AE = AF. It follows that $\triangle AEP \cong \triangle AFP$ (S.A.S.) and PE = PF. Note that the proof holds regardless of the position of P.

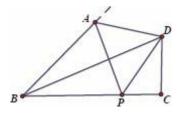


1.11 Let M be the midpoint of BC. Since O is the circumcenter of $\triangle BCD$, OM is the perpendicular bisector of BC. On the other hand, since I is the incenter of $\triangle ACD$, AI is the angle bisector $\angle A$, which passes through M since AB = AC. Thus, A, I, O lie on the perpendicular bisector of BC. The conclusion follows.



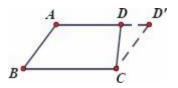
1.12 Let $\angle ABC = 2a$ and $\angle APC = 2\beta$. We have $\angle BAP = \angle APC - \angle ABC = 2(\alpha - \beta)$. Since BD, PD are angle bisectors, we have $\angle CBD = a$ and $\angle CPD = \beta$. It follows that $\angle BDP = \angle CPD - \angle CBD = \alpha - \beta$

Notice that D is the ex-center of $\triangle ABP$ opposite B (Exercise 1.4), which implies that AD bisects the exterior angle of $\angle BAP$.



N o w
$$\angle PAD = \frac{1}{2}(180^{\circ} - \angle BAP) = 90^{\circ} - \frac{1}{2} \cdot 2(\alpha - \beta) = 90^{\circ} - \angle BDP$$
. This completes the proof.

1.13 Suppose otherwise. Draw CD' // AB, intersecting the line AD at D' Now ABCD' is a parallelogram and AB = CD'BC = AD' We have AD'-CD' = BC - AB = AD - CD.



Case I: AD < AD'

Refer to the diagram below.

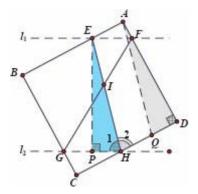
We have DD' = AD' - AD = CD' - CD, i.e., DD' + CD = CD This contradicts triangle inequality.

Case II: AD > AD'

Similarly, we have DD' = AD - AD' = CD - CD', i.e., DD' + CD' = CD. This contradicts triangle inequality.

It follows that D and D' coincide, i.e., ABCD is a parallelogram.

1.14 Draw $EP \perp \ell_2$ at P and AQ // EH, intersecting CD at Q. It is easy to see that AEHQ is a parallelogram and hence, EH = AQ. Given that EP = AQ we must have $\Delta EPH \cong \Delta ADQ$ (H.L.). It follows that $\angle 1 = \angle AQD = \angle 2$. Similarly, we have $\angle BGF = \angle HGF$.



Now
$$\angle GIH = 180^{\circ} - \angle HGF - \angle 1$$
, where $\angle 1 = \frac{1}{2} (180^{\circ} - \angle CHG)$

=
$$90^{\circ} - \frac{1}{2} \angle CHG$$
 and similarly, $\angle HGF = 90^{\circ} - \frac{1}{2} \angle CGH$.

Hence,
$$\angle GIH = 180^{\circ} - \left(90^{\circ} - \frac{1}{2} \angle CHG\right) - \left(90^{\circ} - \frac{1}{2} \angle CGH\right)$$

= $\frac{1}{2}(\angle CGH + \angle CHG) = 45^{\circ}$, because $\triangle CGH$ is a right angled triangle where $\angle C = 90^{\circ}$.

Note: One may observe that I is the ex-center of ΔCGH opposite C (Exercise