Trig 29.03 Paper I [198 marks]

1. By using the substitution $u = \sec x$ or otherwise, find an expression for [6 marks] $\int_{0}^{\frac{\pi}{3}} \int_{0}^{\frac{\pi}{3}} \sec^{n} x \tan x \, \mathrm{d} x \text{ in terms of } n, \text{ where } n \text{ is a non-zero real number.}$

. .

2b. Hence or otherwise, solve the equation $2 \sin 2\theta - 3 - \frac{6}{\sin 2\theta - 1} = 0$ for [5 marks] $0 \le \theta \le \pi, \ \theta \ne \frac{\pi}{4}$.

. .

 	 	 • • • • • • • • • •	 	

3b. Hence or otherwise, solve $\sin 2x + \cos 2x - 1 + \cos x - \sin x = 0$ for *[6 marks]* $0 < x < 2\pi$.

4a. Show that the equation $2\cos^2 x + 5\sin x = 4$ may be written in the form [1 mark] $2\sin^2 x - 5\sin x + 2 = 0$.

4b. Hence, solve the equation $2\cos^2 x + 5\sin x = 4, 0 \le x \le 2\pi$. [5 marks]

5. The following diagram shows triangle ABC, with AB = 10, BC = x and [7 marks] AC = 2x.

diagram not to scale

Given that $\cos \widehat{C} = \frac{3}{4}$, find the area of the triangle.

Give your answer in the form $rac{p\sqrt{q}}{2}$ where $p,q\in\mathbb{Z}^+.$

.....

Consider the function f defined by $f(x)=6+6\cos x$, for $0\leq x\leq 4\pi.$ The following diagram shows the graph of y=f(x).

The graph of f touches the x-axis at points A and B, as shown. The shaded region is enclosed by the graph of y = f(x) and the x-axis, between the points A and B.

6a. Find the *x*-coordinates of A and B. [3 marks]

The right cone in the following diagram has a total surface area of 12π , equal to the shaded area in the previous diagram.

The cone has a base radius of 2, height h, and slant height l.

diagram not to scale

6c. Find the value of l.

[3 marks]

7. It is given that $\csc \theta = \frac{3}{2}$, where $\frac{\pi}{2} < \theta < \frac{3\pi}{2}$. Find the exact value of [4 marks] $\cot \theta$.

8a. Describe a sequence of transformations that transforms the graph of $y = \arctan x$ to the graph of $y = \arctan(2x+1) + \frac{\pi}{4}$ for $x \in \mathbb{R}$.

[4 marks] ^{8b.} Show that $\arctan p + \arctan q \equiv \arctan \left(rac{p+q}{1-pq}
ight)$ where p,q>0 and pq < 1.. ⁸C. Verify that $\arctan{(2x+1)} = \arctan{\left(\frac{x}{x+1}\right)} + \frac{\pi}{4}$ for $x \in \mathbb{R}, x > 0.$ [3 marks]

$\sum_{r=1}^{r}$	$\sum_{n=1}^{n} \arctan\left(rac{1}{2r^2} ight) = rctan\left(rac{n}{n+1} ight)$ for $n\in\mathbb{Z}^+.$

diagram not to scale

AC = 15 cm, BC = 10 cm, and $A\widehat{B}C = \theta$. Let $\sin C\widehat{A}B = rac{\sqrt{3}}{3}$.

10a. Given that \widehat{ABC} is acute, find $\sin heta$.

[3 marks]

11. Let $f(x) = 4\cos\left(rac{x}{2}
ight) + 1$, for $0 \leqslant x \leqslant 6\pi$. Find the values of x for which [8 marks] $f(x) > 2\sqrt{2} + 1$.

12. A and B are acute angles such that $\cos A = \frac{2}{3}$ and $\sin B = \frac{1}{3}$.

[7 marks]

Chow that coa	(2A + B) =	$2\sqrt{2}$	$4\sqrt{5}$
Show that cos	(2A+D) =	27	27

The following diagram shows a right triangle ABC. Point D lies on AB such that CD bisects ACB.

 $A\hat{C}D = \theta$ and AC = 14 cm

13a. Given that $\sin \theta = \frac{3}{5}$, find the value of $\cos \theta$.

[3 marks]

13b. Find the value of $\cos 2 heta.$

[3 marks]

Let θ be an **obtuse** angle such that $\sin \theta = \frac{3}{5}$.

14a. Find the value of an heta.

[4 marks]

14b. Line L passes through the origin and has a gradient of $\tan \theta$. Find the [2 marks] equation of L.

Let
$$f(x) = e^x \sin x - \frac{3x}{4}$$
.

14c. The following diagram shows the graph of f for $0 \le x \le 3$. Line M is a [4 marks] tangent to the graph of f at point P.

Given that M is parallel to L, find the x-coordinate of P.

The lengths of two of the sides in a triangle are 4 cm and 5 cm. Let θ be the angle between the two given sides. The triangle has an area of $\frac{5\sqrt{15}}{2}$ cm².

15a. Show that
$$\sin \theta = \frac{\sqrt{15}}{4}$$
. [1 mark]

16a. Show that $(\sin x + \cos x)^2 = 1 + \sin 2x$.

[2 marks]

.

[9	marks]	1
----	--------	---

^{16c.} Hence or otherwise find $\int_0^{rac{\pi}{6}} (\sec 2x + \tan 2x) \, \mathrm{d}x$ in the form $\ln\left(a+\sqrt{b} ight)$ where a, $b\in\mathbb{Z}.$

[5 marks]

17a. Use integration by parts to show that $\int \mathrm{e}^x \cos 2x \mathrm{d}x = rac{2\mathrm{e}^x}{5} \sin 2x + rac{\mathrm{e}^x}{5} \cos 2x + c, \ c \in \mathbb{R}.$

^{17b.} Hence, show that $\int e^x \cos^2 x dx = rac{e^x}{5} \sin 2x + rac{e^x}{10} \cos 2x + rac{e^x}{2} + c$, $c \in \mathbb{R}$. [3 marks]

The function f is defined by $f(x) = e^x \cos^2 x$, where $0 \le x \le 5$. The curve y = f(x) is shown on the following graph which has local maximum points at A and C and touches the x-axis at B and D.

17c. Find the x-coordinates of A and of C , giving your answers in the form [6 marks] $a + \arctan b$, where $a, b \in \mathbb{R}$.

17d. Find the area enclosed by the curve and the x-axis between B and D, as [5 marks] shaded on the diagram.

18a. Find the roots of $z^{24}=1$ which satisfy the condition $0<rg(z)<rac{\pi}{2}$ [5 marks], expressing your answers in the form $re^{\mathrm{i} heta}$, where $r,\, heta\in\mathbb{R}^+$.

. .

Let *S* be the sum of the roots found in part (a).

18b. Show that $\operatorname{Re} S = \operatorname{Im} S$.

[4 marks]

18c. By , wh	writing $\frac{\pi}{12}$ as $\left(\frac{\pi}{4}-\frac{\pi}{6}\right)$, find the value of $\cos\frac{\pi}{12}$ in the form $\frac{\sqrt{a}+c}{c}$ where a, b and c are integers to be determined.	\sqrt{b} [3 marks]

^{18d.} Hence, or otherwise, show that $S = \frac{1}{2} \left(1 + \sqrt{2} \right) \left(1 + \sqrt{3} \right) (1 + i).$

19. Let $a = \sin b, \ 0 < b < rac{\pi}{2}.$ [5 marks] Find, in terms of *b*, the solutions of $\sin 2x = -a, \ 0 \leqslant x \leqslant \pi.$

The following diagram shows triangle ABC, with $AB=3cm,\,BC=8cm,$ and $A\hat{B}C=\frac{\pi}{3}.$

20a. Show that $\mathrm{AC}=7~\mathrm{cm}.$

[4 marks]

20b. The shape in the following diagram is formed by adding a semicircle [3 marks] with diameter [AC] to the triangle.

Find the exact perimeter of this shape.

[6 marks]

21. The following diagram shows triangle PQR.

diagram not to scale

 $P\hat{Q}R = 30^{\circ}$, $Q\hat{R}P = 45^{\circ}$ and PQ = 13 cm. Find PR.

© International Baccalaureate Organization 2023 International Baccalaureate® - Baccalauréat International® - Bachillerato Internacional®

Printed for 2 SPOLECZNE LICEUM