Trig 29.03 Paper I [198 marks]

- 1. By using the substitution $u=\sec x$ or otherwise, find an expression for $\ [6\ marks]$ $\int\limits_0^{\frac{\pi}{3}} \sec^n x \tan x \,\mathrm{d}\,x$ in terms of n, where n is a non-zero real number.
- ^{2a.} Show that $2x-3-rac{6}{x-1}=rac{2x^2-5x-3}{x-1},\;x\in\mathbb{R},\;x
 eq 1.$

[2 marks]

- 2b. Hence or otherwise, solve the equation $2\sin2\theta-3-\frac{6}{\sin2\theta-1}=0$ for <code>[5 marks]</code> $0\leq\theta\leq\pi,\;\theta\neq\frac{\pi}{4}.$
- 3a. Show that $\sin 2x + \cos 2x 1 = 2 \sin x (\cos x \sin x)$.

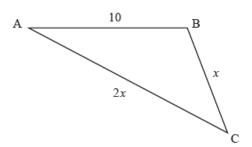
[2 marks]

- 3b. Hence or otherwise, solve $\sin 2x + \cos 2x 1 + \cos x \sin x = 0$ for ~ [6 marks] $0 < x < 2\pi$.
- 4a. Show that the equation $2\cos^2 x + 5\sin x = 4$ may be written in the form [1 mark] $2\sin^2 x 5\sin x + 2 = 0$.
- 4b. Hence, solve the equation $2\cos^2x+5\sin x=4, 0\leq x\leq 2\pi$.

[5 marks]

5. The following diagram shows triangle ABC, with AB=10, BC=x and [7 marks] AC=2x.

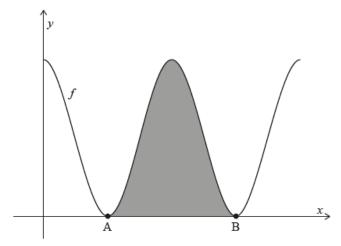
diagram not to scale



Given that $\cos \widehat{C} = \frac{3}{4}$, find the area of the triangle.

Give your answer in the form $rac{p\sqrt{q}}{2}$ where $p,q\in\mathbb{Z}^+.$

Consider the function f defined by $f(x)=6+6\cos x$, for $0\leq x\leq 4\pi$. The following diagram shows the graph of y=f(x).



The graph of f touches the x-axis at points A and B, as shown. The shaded region is enclosed by the graph of y=f(x) and the x-axis, between the points A and B.

6a. Find the x-coordinates of A and B.

[3 marks]

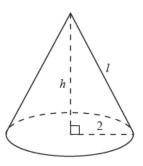
6b. Show that the area of the shaded region is 12π .

[5 marks]

The right cone in the following diagram has a total surface area of 12π , equal to the shaded area in the previous diagram.

The cone has a base radius of 2, height h, and slant height l.

diagram not to scale



6c. Find the value of l.

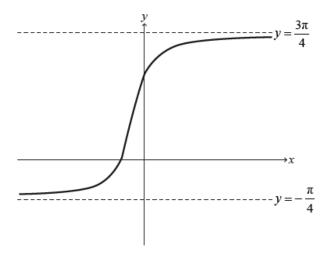
[3 marks]

6d. Hence, find the volume of the cone.

[4 marks]

7. It is given that $\csc\theta=\frac{3}{2}$, where $\frac{\pi}{2}<\theta<\frac{3\pi}{2}$. Find the exact value of <code>[4 marks]</code> $\cot\theta$.

The following diagram shows the graph of $y=\arctan(2x+1)+\frac{\pi}{4}$ for $x\in\mathbb{R}$, with asymptotes at $y=-\frac{\pi}{4}$ and $y=\frac{3\pi}{4}$.



8a. Describe a sequence of transformations that transforms the graph of $y=\arctan x$ to the graph of $y=\arctan(2x+1)+\frac{\pi}{4}$ for $x\in\mathbb{R}$.

8b. Show that $\arctan p + \arctan q \equiv \arctan \Big(rac{p+q}{1-pq} \Big)$ where p,q>0 and q=1.

^{8c.} Verify that
$$\arctan{(2x+1)}=\arctan{\left(\frac{x}{x+1}\right)}+\frac{\pi}{4}$$
 for $x\in\mathbb{R}, x>0$.

[3 marks]

8d. Using mathematical induction and the result from part (b), prove that $\frac{n}{\nabla}$

[9 marks]

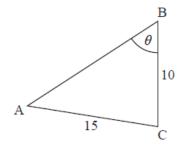
$$\sum\limits_{r=1}^{n} rctan\Bigl(rac{1}{2r^2}\Bigr) = rctan\Bigl(rac{n}{n+1}\Bigr) ext{ for } n \in \mathbb{Z}^+.$$

9. Solve the equation
$$2\cos^2 x + 5\sin x = 4, 0 \le x \le 2\pi$$
.

[7 marks]

The following diagram shows a triangle ABC.

diagram not to scale



 $AC=15~\mathrm{cm}, BC=10~\mathrm{cm}$, and $A\widehat{B}C= heta.$

Let
$$\sin \widehat{CAB} = \frac{\sqrt{3}}{3}$$
.

10a. Given that \widehat{ABC} is acute, find $\sin \theta$.

[3 marks]

$$^{10\text{b.}}$$
 Find $\cos{\left(2 imes ext{C}\widehat{A}B
ight)}$.

[3 marks]

11. Let
$$f(x)=4\cos\left(\frac{x}{2}\right)+1$$
, for $0\leqslant x\leqslant 6\pi$. Find the values of x for which `[8 marks]` $f(x)>2\sqrt{2}+1$.

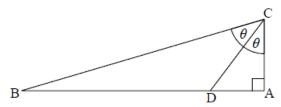
12.
$$A$$
 and B are acute angles such that $\cos A = \frac{2}{3}$ and $\sin B = \frac{1}{3}$.

[7 marks]

Show that
$$\cos\left(2A+B\right)=-rac{2\sqrt{2}}{27}-rac{4\sqrt{5}}{27}.$$

The following diagram shows a right triangle ABC. Point D lies on AB such that CD bisects AĈB.

diagram not to scale



 $\hat{ACD} = \theta$ and AC = 14 cm

13a. Given that $\sin \theta = \frac{3}{5}$, find the value of $\cos \theta$.

[3 marks]

13b. Find the value of $\cos 2\theta$.

[3 marks]

13c. Hence or otherwise, find BC.

[2 marks]

Let θ be an **obtuse** angle such that $\sin\theta = \frac{3}{5}$.

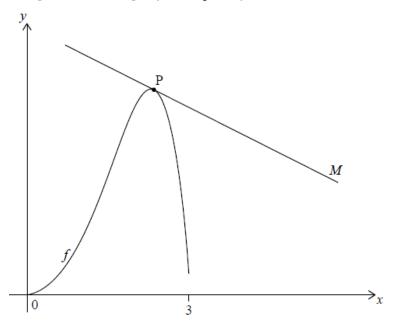
14a. Find the value of $\tan \theta$.

[4 marks]

14b. Line L passes through the origin and has a gradient of $\tan \theta$. Find the $\ \ [2\ marks]$ equation of L.

Let
$$f(x) = e^x \sin x - \frac{3x}{4}$$
.

14c. The following diagram shows the graph of f for $0 \le x \le 3$. Line M is a [4 marks] tangent to the graph of f at point P.



Given that M is parallel to L, find the x-coordinate of P.

The lengths of two of the sides in a triangle are 4 cm and 5 cm. Let θ be the angle between the two given sides. The triangle has an area of $\frac{5\sqrt{15}}{2}$ cm².

^{15a.} Show that
$$\sin \theta = \frac{\sqrt{15}}{4}$$
.

[1 mark]

15b. Find the two possible values for the length of the third side.

[6 marks]

16a. Show that
$$(\sin x + \cos x)^2 = 1 + \sin 2x$$
.

[2 marks]

16b. Show that
$$\sec 2x + \tan 2x = \frac{\cos x + \sin x}{\cos x - \sin x}$$
.

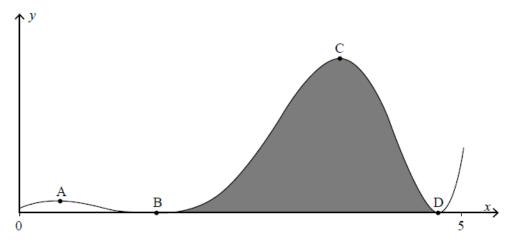
[4 marks]

^{16c.} Hence or otherwise find $\int_0^{\frac{\pi}{6}} (\sec 2x + \tan 2x) \, \mathrm{d}x$ in the form $\ln \left(a + \sqrt{b}\right)$ where a, $b \in \mathbb{Z}$.

[9 marks]

17b. Hence, show that $\int\!\mathrm{e}^x\cos^2x\mathrm{d}x=rac{\mathrm{e}^x}{5}\!\sin2x+rac{\mathrm{e}^x}{10}\!\cos2x+rac{\mathrm{e}^x}{2}+c$, $c\in\mathbb{R}$. [3 marks]

The function f is defined by $f(x) = e^x \cos^2 x$, where $0 \le x \le 5$. The curve y = f(x) is shown on the following graph which has local maximum points at A and C and touches the x-axis at B and D.



17c. Find the x-coordinates of A and of C , giving your answers in the form $a + \arctan b$, where $a, b \in \mathbb{R}$.

17d. Find the area enclosed by the curve and the x-axis between B and D, as $[5 \ marks]$ shaded on the diagram.

18a. Find the roots of $z^{24}=1$ which satisfy the condition $0< rg{(z)}<rac{\pi}{2}$ [5 marks] , expressing your answers in the form $re^{\mathrm{i}\theta}$, where $r,\,\theta\in\mathbb{R}^+$.

Let S be the sum of the roots found in part (a).

18b. Show that Re S = Im S.

[4 marks]

18c. By writing $\frac{\pi}{12}$ as $\left(\frac{\pi}{4}-\frac{\pi}{6}\right)$, find the value of $\cos\frac{\pi}{12}$ in the form $\frac{\sqrt{a}+\sqrt{b}}{c}$ [3 marks] , where a, b and c are integers to be determined.

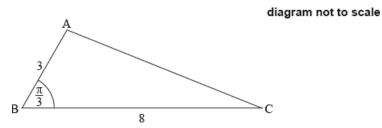
^{18d.} Hence, or otherwise, show that $S = \frac{1}{2} \left(1 + \sqrt{2} \right) \left(1 + \sqrt{3} \right) (1 + i)$. [4 marks]

19. Let $a = \sin b, \ 0 < b < \frac{\pi}{2}$.

[5 marks]

Find, in terms of \emph{b} , the solutions of $\sin 2x = -a, \ 0 \leqslant x \leqslant \pi.$

The following diagram shows triangle ABC, with AB=3cm , BC=8cm , and $A\hat{B}C=\frac{\pi}{3}.$

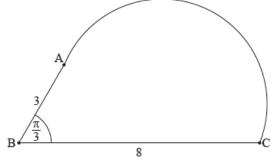


20a. Show that AC = 7 cm.

[4 marks]

20b. The shape in the following diagram is formed by adding a semicircle [3 marks] with diameter [AC] to the triangle.

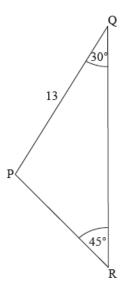
diagram not to scale



Find the exact perimeter of this shape.

21. The following diagram shows triangle PQR.

diagram not to scale



 $P\hat{Q}R=30^{\circ},~Q\hat{R}P=45^{\circ}\,\text{and}~PQ=13\,\text{cm}\,.$

Find PR.

22. Solve the equation $\sec^2 x + 2 \tan x = 0, \ 0 \leqslant x \leqslant 2\pi.$

[5 marks]

[6 marks]

© International Baccalaureate Organization 2023
International Baccalaureate® - Baccalauréat International® - Bachillerato Internacional®

Printed for 2 SPOLECZNE LICEUM