Practice exam papers

Mathematics: analysis and approaches Higher level Paper 1 Practice Set A

Ca						Cand	idat	e ses	ssion	nur	nber

2 hours

Instructions to candidates

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- You are not permitted access to any calculator for this paper.
- Section A: answer all questions. Answers must be written within the answer boxes provided.
- Section B: answer all questions in an answer booklet.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A copy of the mathematics: analysis and approaches formula book is required for this paper.
- The maximum mark for this examination paper is [110 marks].

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

Section A

Answer **all** questions. Answers must be written within the answer boxes provided. Working may be continued below the lines, if necessary.

1 [Maximum mark: 5]
On his way to school, Suresh stops for coffee with probability 0.8. If he stops for coffee, the probability that he is late for school is 0.4; otherwise, the probability that he is late is 0.1. Given that on a particular day Suresh is late for school, what is the probability that he did not stop for coffee?

complex number whi		151	

a Show that $(2x + 1)$ is a factor of $f(x) = 2x^3 - 13x^2 + 17x + 12$. b Solve the inequality $2x^3 - 13x^2 + 17x + 12 > 0$.	
	•
	•
	•
	•
	•

5	[Maximum mark: 6]
	Given the functions
	$f(x) = \frac{2-x}{x+3}$ ($x \neq -3$) and $g(x) = \frac{2}{x-1}$ ($x \neq 1$)
	find $(f \circ g)^{-1}$ in the form $\frac{ax+b}{cx+d}$.

$\lim_{x \to \pi} \frac{x \sin x}{\ln \left(\frac{x}{\pi}\right)}.$			
· ,			

8	[Maximum mark: 7]
	Sketch the graph of

$$y = \frac{2x^2 + 5x - 12}{x + 3}$$

b Aron	we that $\log_2 5$ is an irrational number. In says that $\log_2 n$ is an irrational number for every integer $n \ge 10$. Give a interexample to disprove this statement.	
Cour	nerexample to disprove this statement.	
• • • • • •		•
• • • • • •		٠
• • • • • •		•
		٠

Do not write solutions on this page

Section B

Answer all questions in an answer booklet. Please start each question on a new page.

10 [Maximum mark: 20]

a Sketch the graph of $y = x^2 + 3x - 10$, showing clearly the axes intercepts and the coordinates of the vertex.

[4]

- **b** i Show that the line y = 2x 20 does not intersect the graph of $y = x^2 + 3x 10$.
 - ii Find the set of values of k for which the line y = 2x k intersects the graph of $y = x^2 + 3x 10$ at two distinct points.

[7]

c Describe fully a sequence of transformations which transforms the graph of $y = x^2 + 3x - 10$ to the graph of $y = \left(2x + \frac{3}{2}\right)^2 + 2$.

[4]

d Sketch the following graphs, indicating clearly all axes intercepts, asymptotes and turning points:

i
$$y = |x^2 + 3x - 10|$$

ii
$$y = \frac{1}{x^2 + 3x - 10}$$
 [5]

11 [Maximum mark: 16]

The graph of $y = e^{-x} \sin 2x$ for $0 \le x \le \pi$ is shown below.

The graph has a maximum point at P, a minimum point at Q and points of inflection at R and S.

- a Show that the x-coordinates of point P and point Q satisfy $\tan 2x = 2$. [4]
- **b** Show that the *x*-coordinates of points R and S satisfy $\tan 2x = -\frac{4}{3}$. [4]
- c Show that the area of the shaded region enclosed below the curve and above the x-axis is given by $a + be^c$, where a, b and c are constants to be found. [8]

12 [Maximum mark: 19]

- a State and prove de Moivre's theorem. [5]
- **b** Use de Moivre's theorem to prove that $\cos 5\theta = 16 \cos^5 \theta 20 \cos^3 \theta + 5 \cos \theta$. [4]
- c Solve the equation $\cos 5\theta = 0$ for $0 \le \theta \le \pi$. d By considering the equation $16c^5 - 20c^3 + 5c = 0$, where $c = \cos \theta$, find the exact value of $\cos \left(\frac{\pi}{10}\right)$.
- Justify your choice. (7)
- e Find the exact value of $\cos\left(\frac{\pi}{10}\right)\cos\left(\frac{7\pi}{10}\right)$. [2]