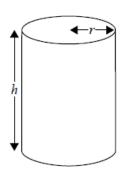
Differential Calculus revision 2 [163 marks]

A curve has equation $3x - 2y^2e^{x-1} = 2$. ^{1a.} Find an expression for $\frac{\mathrm{d}y}{\mathrm{d}x}$ in terms of x and y. [5 marks] 1b. Find the equations of the tangents to this curve at the points where the [4 marks] curve intersects the line x=1.


Ising implicit differentiation, or otherwise, find $rac{\mathrm{d}y}{\mathrm{d}x}$ for each curve in \qquad [4 mark erms of x and y .
et P (a,b) be the unique point where the curves C_1 and C_2 intersect. \qquad [2 mark how that the tangent to C_1 at P is perpendicular to the tangent to C_2 at P.

Consider the curves C_1 and C_2 defined as follows

 C_1 : xy=4 , x>0

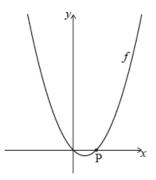
A closed cylindrical can with radius r centimetres and height h centimetres has a volume of $20\pi~\rm cm^3.$

diagram not to scale

3a.	xpress h in terms of r .	[2 marks]

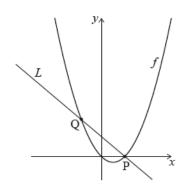
The material for the base and top of the can costs 10 cents per cm^2 and the material for the curved side costs 8 cents per cm^2 . The total cost of the material, in cents, is C.

how that $C=20\pi r^2+rac{320\pi}{r}.$	[4 mai


Let $f(x) =$	$2-3x^{5}$	$x \in \mathbb{R}$	$x \neq 0$
Let $f(x)$ —	${2x^{3}}$,	$u \subset \mathbb{R},$	$x \neq 0$

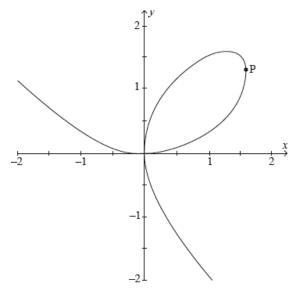
tch the graph of $y=f\left(x ight)$ showing clearly the position of the points $% f\left(x ight)$ [4 $f\left(x ight)$].
nd B.
nd B.
nd B.

Let $f(x)=x^2-x$, for $x\in\mathbb{R}.$ The following diagram shows part of the graph of f.


diagram not to scale

The graph of f crosses the x-axis at the origin and at the point $\mathrm{P}(1,0)$.

The line ${\cal L}$ intersects the graph of f at another point Q, as shown in the following diagram.


diagram not to scale

5. Find the area of the region enclosed by the graph of f and the line L. [6 marks]

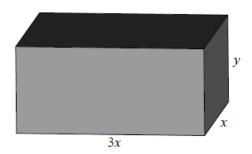
6. The folium of Descartes is a curve defined by the equation

 $x^3+y^3-3xy=0$, shown in the following diagram.

Determine the exact coordinates of the point P on the curve where the tangent line is parallel to the $y\text{-}\mathrm{axis}.$

et $g\left(x ight) =p^{x}+% {\displaystyle\int\limits_{0}^{x}} dx$	q , for $x,p,q\in\mathbb{R},p>1.$ The point	$A\left(0,a ight)$ lies on the graph of
et $f\left(x ight) =g^{-1}\left(x ight)$	$x)$. The point ${ m B}$ lies on the graph	of f and is the reflection of
oint $\hat{\mathbf{A}}$ in the line	e $y=x$.	
		[2 m
oint ${f A}$ in the line		[2 m
oint ${f A}$ in the line		[2 m
oint ${f A}$ in the line		[2 m
oint ${f A}$ in the line		[2 m
oint ${f A}$ in the line		[2 m
oint ${f A}$ in the line		[2 m
oint ${f A}$ in the line		[2 m

G	iven that $f'\left(a ight)=rac{1}{\ln p}$, find the equation of L_1 in terms of x , p and q . [5 mai

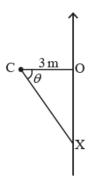

7c. The line L_2 is tangent to the graph of g at ${\bf A}$ and has equation $y=(\ln p)\,x+q+1.$

[7 marks]

The line L_2 passes through the point $(-2,\ -2)$. The gradient of the normal to g at A is $\frac{1}{\ln\left(\frac{1}{3}\right)}$ Find the equation of L_1 in terms of x.

A small cuboid box has a rectangular base of length $3x\,\mathrm{cm}$ and width $x\,\mathrm{cm}$, where x>0. The height is $y\,\mathrm{cm}$, where y>0.

diagram not to scale


The sum of the length, width and height is $12\,\mathrm{cm}$.

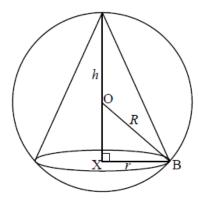
Ba.	Write down an expression for y in terms of x .	[1 mark]
	The volume of the box is $V\mathrm{cm^3}$.	
	The volume of the box is y cm.	
	Find an expression for V in terms of x .	[2 marks]
		[2 marks]
		[2 marks

_	nd $rac{\mathrm{d}V}{\mathrm{d}x}$.	[2 mar
Fi	nd the value of x for which V is a maximum.	[4 mar
Fi	nd the value of x for which V is a maximum.	[4 mar
Fi	nd the value of x for which V is a maximum.	[4 mar
Fi	nd the value of x for which V is a maximum.	[4 mar
Fi	nd the value of x for which V is a maximum.	[4 mar
Fi	nd the value of x for which V is a maximum.	[4 mar
Fi	nd the value of x for which V is a maximum.	[4 mar
Fi	nd the value of x for which V is a maximum.	[4 mar
Fi	nd the value of x for which V is a maximum.	[4 mar
Fi	nd the value of x for which V is a maximum.	[4 mar

e.	Justify your answer.	[3 marks
f.	Find the maximum volume.	[2 marks
f.	Find the maximum volume.	[2 marks
f.	Find the maximum volume.	[2 marks
f.	Find the maximum volume.	[2 marks
f.	Find the maximum volume.	
f.		

9. A camera at point C is 3 m from the edge of a straight section of road as [6 marks] shown in the following diagram. The camera detects a car travelling along the road at t=0. It then rotates, always pointing at the car, until the car passes O, the point on the edge of the road closest to the camera.

A car travels along the road at a speed of 24 ms⁻¹. Let the position of the car be X and let $O\hat{C}X = \theta$.

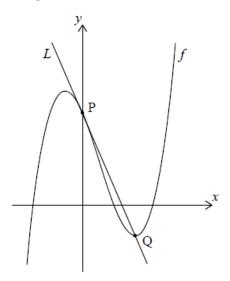

Find $\frac{\mathrm{d}\theta}{\mathrm{d}t}$, the rate of rotation of the camera, in radians per second, at the instant the car passes the point O .

and our power or

hich $rac{\mathrm{d}y}{\mathrm{d}x}=0.$

	$\mathbf{a}x$	$=\frac{2+\pi}{2-\pi}$.		[5 marks

A right circular cone of radius r is inscribed in a sphere with centre O and radius R as shown in the following diagram. The perpendicular height of the cone is h, X denotes the centre of its base and B a point where the cone touches the sphere.



12a. Show that the	volume	of the	cone	may	be	expressed	by
$V=rac{\pi}{3}(2Rh^2+$	$-h^{3}$).					-	

[4 marks]

Let $f(x) = x^3 - 2x^2 + ax + 6$. Part of the graph of f is shown in the following diagram.

The graph of f crosses the y-axis at the point P. The line ${\it L}$ is tangent to the graph of f at P.

13a. Find f'(x). [2 marks]

13b. Hence, find the equation of $\it L$ in terms of $\it a$.

[4 marks]

13c. The graph of f has a local minimum at the point Q. The line $\it L$ passes $\it [8 marks]$ through Q.

Find the value of a.

Consider the curve C defined by $y^2=\sin{(xy)}, y
eq 0.$

Show that $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y\cos{(xy)}}{2y - x\cos{(xy)}}$.	[5 marks]

rove	e that, when $rac{\mathrm{d}y}{\mathrm{d}x}=0\ ,\ y=\pm 1.$	[5 m

Use l'Hôpital's rule to determine the value of $\lim_{x \to 0} \left(\frac{2x \cos{(x + x)}}{5 \tan{x}} \right)$	$\left(\frac{x^2}{x}\right)$. [5 marks]

© International Baccalaureate Organization 2023 International Baccalaureate® - Baccalauréat International® - Bachillerato Internacional®

Printed for 2 SPOLECZNE LICEUM