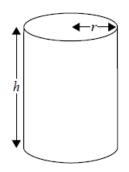
Differential Calculus revision 2 [163 marks]

A curve has equation $3x - 2y^2 e^{x-1} = 2$.

^{1a.} Find an expression for $\frac{\mathrm{d}y}{\mathrm{d}x}$ in terms of x and y.

[5 marks]

1b. Find the equations of the tangents to this curve at the points where the [4 marks] curve intersects the line x = 1.


Consider the curves C_1 and C_2 defined as follows $C_1 : xy = 4$, x > 0

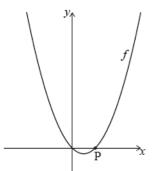
 C_2 : $y^2-x^2=2$, x>0

- ^{2a.} Using implicit differentiation, or otherwise, find $\frac{dy}{dx}$ for each curve in [4 marks] terms of x and y.
- 2b. Let P(a, b) be the unique point where the curves C_1 and C_2 intersect. [2 marks] Show that the tangent to C_1 at P is perpendicular to the tangent to C_2 at P.

A closed cylindrical can with radius r centimetres and height h centimetres has a volume of 20π cm³.

diagram not to scale

[2 marks]


The material for the base and top of the can costs 10 cents per cm^2 and the material for the curved side costs 8 cents per cm^2 . The total cost of the material, in cents, is *C*.

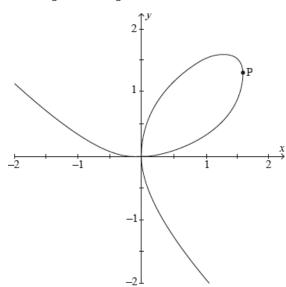
- 3b. Show that $C = 20\pi r^2 + \frac{320\pi}{r}$. [4 marks]
- 3c. Given that there is a minimum value for *C*, find this minimum value in [9 marks] terms of π .

Let
$$f(x)=rac{2-3x^5}{2x^3}, \; x\in \mathbb{R}, \; x
eq 0.$$

- 4a. The graph of y = f(x) has a local maximum at A. Find the coordinates *[5 marks]* of A.
- 4b. Show that there is exactly one point of inflexion, B, on the graph of y = f(x).
- ^{4c.} The coordinates of B can be expressed in the form $B(2^a, b \times 2^{-3a})$ [3 marks] where $a, b \in \mathbb{Q}$. Find the value of a and the value of b.
- 4d. Sketch the graph of y = f(x) showing clearly the position of the points [4 marks] A and B.

Let $f(x) = x^2 - x$, for $x \in \mathbb{R}$. The following diagram shows part of the graph of f. diagram not to scale

The graph of f crosses the x-axis at the origin and at the point P(1,0).


diagram not to scale

The line L intersects the graph of f at another point Q, as shown in the following diagram.

5. Find the area of the region enclosed by the graph of f and the line L. [6 marks]

6. The folium of Descartes is a curve defined by the equation [8 marks] $x^3 + y^3 - 3xy = 0$, shown in the following diagram.

Determine the exact coordinates of the point P on the curve where the tangent line is parallel to the y-axis.

Let $g(x) = p^x + q$, for $x, p, q \in \mathbb{R}, p > 1$. The point A(0,a) lies on the graph of g. Let $f(x) = g^{-1}(x)$. The point B lies on the graph of f and is the reflection of point A in the line y = x.

7a. Write down the coordinates of B.

The line L_1 is tangent to the graph of f at B.

7b. Given that $f'(a) = \frac{1}{\ln p}$, find the equation of L_1 in terms of x, p and q. [5 marks]

7c. The line L_2 is tangent to the graph of g at A and has equation [7 marks] $y = (\ln p) x + q + 1$. The line L_2 passes through the point (-2, -2). The gradient of the normal to g at A is $\frac{1}{\ln(\frac{1}{3})}$.

Find the equation of L_1 in terms of x.

A small cuboid box has a rectangular base of length 3x cm and width x cm, where x > 0. The height is y cm, where y > 0.

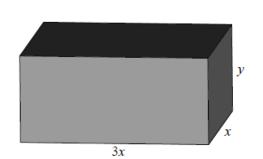


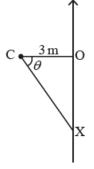
diagram not to scale

The sum of the length, width and height is $12 \, \mathrm{cm}$.

8a. Write down an expression for y in terms of x.

The volume of the box is $V \,\mathrm{cm^3}$.

8b. Find an expression for V in terms of x.


[2 marks]

[1 mark]

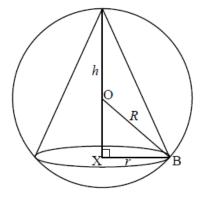
[2 marks]

8c. Find $\frac{\mathrm{d}V}{\mathrm{d}x}$.	[2 marks]
8d. Find the value of x for which V is a maximum.	[4 marks]
8e. Justify your answer.	[3 marks]
8f. Find the maximum volume.	[2 marks]

9. A camera at point C is 3 m from the edge of a straight section of road as [6 marks] shown in the following diagram. The camera detects a car travelling along the road at t = 0. It then rotates, always pointing at the car, until the car passes O, the point on the edge of the road closest to the camera.

A car travels along the road at a speed of 24 ms⁻¹. Let the position of the car be X and let $O\hat{C}X = \theta$.

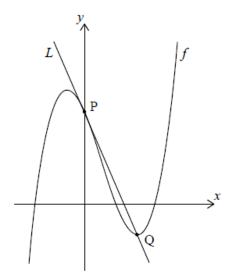
Find $\frac{d\theta}{dt}$, the rate of rotation of the camera, in radians per second, at the instant the car passes the point O .


10. Find the coordinates of the points on the curve $y^3 + 3xy^2 - x^3 = 27$ at [9 marks] which $rac{\mathrm{d}y}{\mathrm{d}x} = 0$.

The curve C is given by the equation $y = x \tan\left(\frac{\pi x y}{4}\right)$.

^{11a.} At the point (1, 1) , show that $\frac{dy}{dx} = \frac{2+\pi}{2-\pi}$. [5 marks]

11b. Hence find the equation of the normal to C at the point (1, 1). [2 marks]


A right circular cone of radius r is inscribed in a sphere with centre O and radius R as shown in the following diagram. The perpendicular height of the cone is h, X denotes the centre of its base and B a point where the cone touches the sphere.

12a. Show that the volume of the cone may be expressed by [4 marks] $V = \frac{\pi}{3} (2Rh^2 - h^3).$

12b. Given that there is one inscribed cone having a maximum volume, [4 marks] show that the volume of this cone is $\frac{32\pi R^3}{81}$.

Let $f(x) = x^3 - 2x^2 + ax + 6$. Part of the graph of f is shown in the following diagram.

The graph of f crosses the y-axis at the point P. The line L is tangent to the graph of f at P.

13a. Find f'(x).

[2 marks]

13b. Hence, find the equation of L in terms of a.

[4 marks]

13c. The graph of f has a local minimum at the point Q. The line L passes [8 marks] through Q. Find the value of a. Use l'Hôpital's rule to find $x \to 0 \left(\frac{\arctan 2x}{\tan 3x} \right)$. [5 marks] 14.

Consider the curve *C* defined by $y^2 = \sin{(xy)}, y \neq 0$.

^{15a.} Show that $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y\cos(xy)}{2y-x\cos(xy)}$. [5 marks]

^{15b.} Prove that, when $\frac{\mathrm{d}y}{\mathrm{d}x} = 0$, $y = \pm 1$.

- 15c. Hence find the coordinates of all points on C, for $0 < x < 4\pi$, where [5 marks] $\frac{\mathrm{d}y}{\mathrm{d}x} = 0.$
- 16. Find the equation of the tangent to the curve $y = e^{2x} 3x$ at the point [5 marks] where x = 0.
- Use l'Hôpital's rule to determine the value of $\lim_{x \to 0} \left(\frac{2x \cos(x^2)}{5 \tan x} \right)$. [5 marks] 17.

© International Baccalaureate Organization 2023 International Baccalaureate ® - Baccalauréat International ® - Bachillerato Intern Bachillerato Internacional

Printed for 2 SPOLECZNE LICEUM

[5 marks]