Normal distribution 1 [33 marks]

1. [Maximum mark: 5]

23M.1.AHL.TZ1.9

On a specific day, the speed of cars as they pass a speed camera can be modelled by a normal distribution with a mean of $67.3~{
m km}~{
m h}^{-1}$.

A speed of $75.~7~km~h^{-1}$ is two standard deviations from the mean.

(a) Find the standard deviation for the speed of the cars.

[2]

Markscheme	
attempt to find the difference between 75.7 and 67.3 (M1)	
$\tfrac{75.7-67.3}{2}$	
$4.2~(\mathrm{km}~\mathrm{h}^{-1})$ A1	
[2 marks]	

It is found that 82% of cars on this road travel at speeds between $p \text{ km h}^{-1}$ and $q \text{ km h}^{-1}$, where p < q. This interval includes cars travelling at a speed of 74 km h⁻¹.

(b) Show that the region of the normal distribution between p and q is **not** symmetrical about the mean.

[3]

Markscheme

METHOD 1 (Comparing areas above and below the mean)

 $P(67.\ 3<$ speed <74) OR Normal CDF($67.\ 3,\ 74,\ 67.\ 3,\ 4.\ 2)$ OR sketch of normal distribution with $67.\ 3$ and 74 labelled and shaded

between (M1)

area of region between mean and q is at least $0.\,445\;(0.\,444670\ldots)$

Hence no more than $0.\,375~(0.\,375329\ldots)$ between mean and p *R*1

The region between p and q is not symmetrical **AG**

METHOD 2 (Comparing areas in the tails)

attempt to calculate probability that speed < p and speed > q with q = 74 (M1)

 $P(\mathsf{speed} < 74) = 0.944670\ldots$

P(speed < p) = (0.944670... - 0.82 =) 0.124670...

P(speed > q) = (1 - 0.944670... =) 0.0553295... A1

if $q \geq 74$, then $ext{P(speed} > q) \geq 0.\,124670$ and $ext{P(speed} < p) \geq 0.\,124670$ so

 $P(\mathsf{speed} > q)$ will never equal $P(\mathsf{speed} < p)$ **R1**

the region between p and q is not symmetrical **AG**

METHOD 3 (Assumption of symmetry comparing speeds)

attempt to calculate area below q assuming distribution is symmetrical *(M1)*

e.g. P(speed < q) $= 0.82 + 1/_2 \times 0.18 \ (0.91)$

EITHER

$(q=) \ 72. \ 9 \ \ (72. \ 9311 \ldots)$ A1	
72.9 < 74 so 74 would not be in the region	R1
the region between p and q is not symmetrical	AG

OR

${ m P}({ m speed}{<}74){=}0.945~(0.944670\ldots)$ A1	
0.945>0.91 so 74 would not be in the region	R1
the region between p and q is not symmetrical AG	

METHOD 4 (Assumption of symmetry comparing areas)

attempt to calculate symmetrical area with 74 as a boundary $(\it M1)$ $P(60.\ 6 < speed < 74)$ OR Normal CDF(60. 6, $\ 74, \ 67.\ 3, \ 4.\ 2)$ OR $P(67.\ 3 < speed < 74)$ OR Normal CDF(67.3, 74, 67.3, 4.2)

EITHER

0.889 (0.889340...) A1

the region between p and q is not symmetrical \emph{AG}

OR

0. 445 (0. 444670...) A1 0. 4459 > 0. 82 \div 2 so 74 would not be in the region R1 the region between p and q is not symmetrical AG [3 marks]

2. [Maximum mark: 6] 23M.1.AHL.TZ2.5 The lengths of the seeds from a particular mango tree are approximated by a normal distribution with a mean of $4~{\rm cm}$ and a standard deviation of $0.25~{\rm cm}$.

A seed from this mango tree is chosen at random.

(a) Calculate the probability that the length of the seed is less than $3.7~{
m cm}.$

[2]

Markscheme	
------------	--

 $X \sim N(4, 0.25^2)$

EITHER

correct probability expression (M1)

Note: Accept a weak or strict inequality, and any label instead of X, e.g. length or L.

It is known that 30% of the seeds have a length greater than $k~{
m cm}$.

(b) Find the value of k

[2]

Markscheme EITHER Correct probability expression (M1)

$$\mathrm{P}(X < k) = 0.7$$
 or $\mathrm{P}(X > k) = 0.3$

Note: Accept a weak or strict inequality, and any label instead of X e.g., length or L.

OR

normal curve with vertical line to the right of the mean and shaded region, correctly labelled either $0.\ 3$ or $0.\ 7$ (M1)

For a seed of length $d~{
m cm}$, chosen at random, ${
m P}(4-m < d < 4+m) = 0.~6.$

(c) Find the value of m.

Markscheme

EITHER

correct probability equation (M1)

 $\mathrm{P}(\mathrm{length} < 4+m) = 0.8$ OR $\mathrm{P}(\mathrm{length} < 4-m) = 0.2$

Note: Accept any letter instead of "length" e.g., X or L.

OR

normal curve with vertical lines symmetrical about the mean line with a correct indication of an area of $0.\,6$ or $0.\,2$ or $0.\,8$ $({\it M1})$

THEN

0.210(0.210405...) A1

Note: Award (M1)A0 for an answer of 3.7895 or 4.2105 seen without working. Condone 0.21 seen and award (M1)A1.

[2 marks]

3.[Maximum mark: 5]22N.1.SL.TZ0.8Roy is a member of a motorsport club and regularly drives around the Port
Campbell racetrack.200.1.SL.TZ0.8

The times he takes to complete a lap are normally distributed with mean 59 seconds and standard deviation 3 seconds.

(a) Find the probability that Roy completes a lap in less than 55 seconds.

[2]

Markscheme	
${ m P}(T < 55)$ (M1)	
$0.0912 \ (0.0912112)$	A1
Note: Award <i>M1</i> for a correct calculator not normal $cdf(0, 55, 59, 3)$ or norm	tation such as ${ m al}\; { m cdf} ig(-1^{99},\; 55,\; 59,\; 3ig).$
[2 marks]	

Roy will complete a 20 lap race. It is expected that 8.6 of the laps will take more than t seconds.

(b) Find the value of t.

[3]

Markscheme		
correct use of expected value		
8.6=20 imes p OR $(p=)~0.43$ seen	(M1)	

- - (a) Write down the percentage of bags that weigh more than $500\,\mathrm{g}.$

[1]

Markscheme

50% A1 Note: Do not accept
$$0.5$$
 or $\frac{1}{2}$.

A bag that weighs less than $495\,g$ is rejected by the factory for being underweight.

(b) Find the probability that a randomly chosen bag is rejected for being underweight.

[2]

Markscheme

 $0.0478 \ (0.0477903\ldots, \, 4.78\%)$ A2

[2 marks]

(c) A bag that weighs more than k grams is rejected by the factory for being overweight. The factory rejects 2% of bags for being overweight.

Find the value of k.

[3]

Markscheme

 ${
m P}(X < k) = 0.\,98\,$ or ${
m P}(X > k) = 0.\,02$ (M1)

Note: Award (*M1*) for a sketch with correct region identified.

```
506 g (506. 161...) A2
```

5. [Maximum mark: 5] 22M.1.SL.TZ2.10 The masses of Fuji apples are normally distributed with a mean of 163 g and a standard deviation of 6.83 g.

When Fuji apples are picked, they are classified as small, medium, large or extra large depending on their mass. Large apples have a mass of between $172\,g$ and $183\,g.$

(a) Determine the probability that a Fuji apple selected at random will be a large apple.

Approximately 68% of Fuji apples have a mass within the medium-sized category, which is between k and $172\,{
m g}$.

(b) Find the value of k.

[3]

Markscheme
EITHER
$(\mathrm{P}(x < 172))$
0.906200 (A1)
$(0.906200\ldots - 0.68)$
0.226200 (A1)
OR
$(\mathrm{P}(163 < x < 172))$
0.406200 (A1)
$0.5-(0.68-0.406200\ldots)$ or
$0.5 + (0.68 - 0.406200\ldots)$
$0.226200\ldots$ or $0.773799\ldots$ (A1)

Note: Award **A1** for a normal distribution curve with a vertical line on each side of the mean and a correct probability of either 0.406 or 0.274 or

0.906 shown, **A1** for a probability of 0.226 seen.

THEN

 $(k=) \ 158 \ {
m g} \ (157.\ 867 \dots \ {
m g})$ A1

[3 marks]

6. [Maximum mark: 6]

23M.1.AHL.TZ1.11

A shop sells oranges and lemons. The weights of the oranges are assumed to be normally distributed with mean 205 grams and standard deviation 5 grams. The weights of the lemons are assumed to be normally distributed with mean 105 grams and standard deviation 3 grams.

Nelia selects 1 orange and 2 lemons at random and independent of each other. Calculate the probability that the weight of her orange exceeds the combined weight of her lemons.

[6]

Markscheme Let D = O - L - L (A1) $(\text{mean} =) \ 205 - 105 - 105 \ (= -5)$ (A1)

© International Baccalaureate Organization, 2024