- 1. The weights of the oranges produced by a farm may be assumed to be normally distributed with mean 205 grams and standard deviation 10 grams.
 - (a) Find the probability that a randomly chosen orange weighs more than 200 grams.
 - (b) Five of these oranges are selected at random to be put into a bag. Find the probability that the combined weight of the five oranges is less than 1 kilogram.
 - (c) The farm also produces lemons whose weights may be assumed to be normally distributed with mean 75 grams and standard deviation 3 grams. Find the probability that the weight of a randomly chosen orange is more than three times the weight of a randomly chosen lemon.

(5) (Total 11 marks)

(2)

(4)

(a)	$z = \frac{200 - 205}{10} = -0.5$	(M1)
	probability = 0.691 (accept 0.692)	A1
Note	e: Award M1A0 for 0.309 or 0.308	
(b)	let X be the total weight of the 5 oranges then $E(X) = 5 \times 205 = 1025$ $Var(X) = 5 \times 100 = 500$ P(X < 1000) = 0.132	(A1) (M1)(A1) (A1)
(c)	let $Y = B - 3C$ where B is the weight of a random orange weight of a random lemon $E(Y) = 205 - 3 \times 75 = -20$ $Var(Y) = 100 + 9 \times 9 = 181$ P(Y > 0) = 0.0686	and C the (M1) (A1) (M1)(A1) A1

Note: Award A1 for 0.0681 obtained from tables

[11]

- 2. A shop sells apples and pears. The weights, in grams, of the apples may be assumed to have a N (200, 15^2) distribution and the weights of the pears, in grams, may be assumed to have a N (120, 10^2) distribution.
 - (a) Find the probability that the weight of a randomly chosen apple is more than double the weight of a randomly chosen pear.
 - (b) A shopper buys 3 apples and 4 pears. Find the probability that the total weight is greater than 1000 grams.

(6) (Total 14 marks)

(8)

(a)	Let X , Y (grams) denote respectively the weights of a randomly chosen apple, pear. Then		
	X - 2Y is N (200 - 2 × 120, 15 ² + 4 × 10 ²),	(M1)(A1)(A1)	
	i.e. N(-40, 25 ²)	A1	
	We require		
	P(X > 2Y) = P(X - 2Y > 0)	(M1)(A1)	
	= 0.0548	A2	
(b)	Let $T = X_1 + X_2 + X_3 + Y_1 + Y_2 + Y_3 + Y_4$ (grams) denote the total weight.		
	Then		
	<i>T</i> is N $(3 \times 200 + 4 \times 120, 3 \times 15^2 + 4 \times 10^2)$, i.e. N(1080, 1075) P(<i>T</i> > 1000) = 0.993	(M1)(A1)(A1) A1 A2	[14]

3.	(a)	The random variable Y is such that $E(2Y + 3) = 6$ and $Var(2 - 3Y) = 11$.				
		Calculate				
		(i) $E(Y);$				
		(ii) $\operatorname{Var}(Y)$;				
		(iii) $E(Y^2)$.				
				(6)		
	(b)	Independent random variables R and S are such that				
		$R \sim N(5, 1)$ and $S \sim N(8, 2)$.				
		The random variable V is defined by $V = 3S - 4R$.				
		Calculate $P(V > 5)$.		(6)		
				(Total 12 marks)		
(a)	(i)	E(2Y + 3) = 6 2E(Y) + 3 = 6	M1			
		$E(Y) = \frac{3}{2}$	A1			
		$L(1) = \frac{1}{2}$	М			
	(ii)	Var(2-3Y) = 11 Var(-3Y) = 11	(M1)			
		9 Var $(Y) = 11$	()			
		$\operatorname{Var}\left(Y\right) = \frac{11}{9}$	A1			
	(iii)	$E(Y^2) = Var(Y) + [E(Y)]^2$	M1			
		$=\frac{11}{9}+\frac{9}{4}$				
		$=\frac{125}{36}$	A1	N0		
(b)	E(V	$\dot{T} = E(3S - 4R)$				
		= 3E(S) - 4E(R) = 24 - 20 = 4	M1 A1			
	Var	$r(3S - 4R) = 9 \operatorname{Var}(S) + 16 \operatorname{Var}(R)$, since R and S				
	are	independent random variables = $18 + 16 = 34$	M1 A1			
	<i>V</i> ~	- 18 + 10 - 54 • N(4, 34)	AI			
	P(<i>V</i>	7>5) = 0.432	A2	N0 [12]		

[12]